Empirical study of privacy inference attack against deep reinforcement learning models

Most studies on privacy in machine learning have primarily focused on supervised learning, with little research on privacy concerns in reinforcement learning. However, our study has demonstrated that observation information can be extracted through trajectory analysis. In this paper, we propose a va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Connection science 2023-12, Vol.35 (1)
Hauptverfasser: Zhou, Huaicheng, Mo, Kanghua, Huang, Teng, Li, Yongjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Connection science
container_volume 35
creator Zhou, Huaicheng
Mo, Kanghua
Huang, Teng
Li, Yongjin
description Most studies on privacy in machine learning have primarily focused on supervised learning, with little research on privacy concerns in reinforcement learning. However, our study has demonstrated that observation information can be extracted through trajectory analysis. In this paper, we propose a variable information inference attack targeting the observation space of policy models, which is categorised into two types: observed value inference attack and observed variable inference. Our algorithm has demonstrated a high success rate in privacy inference attacks for both types of observation information.
doi_str_mv 10.1080/09540091.2023.2211240
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2907068951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907068951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-42d68f429a73c288ce52bb5b24b86776b4bf52807fbe9e5ffc0086a0fb9e140e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiWWKeMHTtxdqCqPKRKbICt5TjjKiVxip2C8vcktGxZzWLOvaM5hFwzWDBQcAuFFAAFW3Dg6YJzxriAEzJjaQYJiEKcktnEJBN0Ti5i3AKABMZm5H3V7upQW9PQ2O-rgXaO7kL9ZexAa-8woLdITd8b-0HNxtQ-9rRC3NGA474LFlv0PW3QBF_7DW27Cpt4Sc6caSJeHeecvD2sXpdPyfrl8Xl5v05sqmSfCF5lyglemDy1XCmLkpelLLkoVZbnWSlKJ7mC3JVYoHTOAqjMgCsLZAIwnZObQ-8udJ97jL3edvvgx5OaF5BDpgrJRkoeKBu6GAM6Pb7YmjBoBnpSqP8U6kmhPiocc3eH3O-nrfnuQlPp3gxNF1ww3tZRp_9X_ADr5XiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907068951</pqid></control><display><type>article</type><title>Empirical study of privacy inference attack against deep reinforcement learning models</title><source>Taylor &amp; Francis Open Access</source><source>Alma/SFX Local Collection</source><creator>Zhou, Huaicheng ; Mo, Kanghua ; Huang, Teng ; Li, Yongjin</creator><creatorcontrib>Zhou, Huaicheng ; Mo, Kanghua ; Huang, Teng ; Li, Yongjin</creatorcontrib><description>Most studies on privacy in machine learning have primarily focused on supervised learning, with little research on privacy concerns in reinforcement learning. However, our study has demonstrated that observation information can be extracted through trajectory analysis. In this paper, we propose a variable information inference attack targeting the observation space of policy models, which is categorised into two types: observed value inference attack and observed variable inference. Our algorithm has demonstrated a high success rate in privacy inference attacks for both types of observation information.</description><identifier>ISSN: 0954-0091</identifier><identifier>EISSN: 1360-0494</identifier><identifier>DOI: 10.1080/09540091.2023.2211240</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>adversarial attack ; Algorithms ; data security ; Deep learning ; Empirical analysis ; Inference ; Machine learning ; Privacy ; privacy attack ; Reinforcement learning ; Supervised learning ; Trajectory analysis</subject><ispartof>Connection science, 2023-12, Vol.35 (1)</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-42d68f429a73c288ce52bb5b24b86776b4bf52807fbe9e5ffc0086a0fb9e140e3</citedby><cites>FETCH-LOGICAL-c385t-42d68f429a73c288ce52bb5b24b86776b4bf52807fbe9e5ffc0086a0fb9e140e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/09540091.2023.2211240$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/09540091.2023.2211240$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Zhou, Huaicheng</creatorcontrib><creatorcontrib>Mo, Kanghua</creatorcontrib><creatorcontrib>Huang, Teng</creatorcontrib><creatorcontrib>Li, Yongjin</creatorcontrib><title>Empirical study of privacy inference attack against deep reinforcement learning models</title><title>Connection science</title><description>Most studies on privacy in machine learning have primarily focused on supervised learning, with little research on privacy concerns in reinforcement learning. However, our study has demonstrated that observation information can be extracted through trajectory analysis. In this paper, we propose a variable information inference attack targeting the observation space of policy models, which is categorised into two types: observed value inference attack and observed variable inference. Our algorithm has demonstrated a high success rate in privacy inference attacks for both types of observation information.</description><subject>adversarial attack</subject><subject>Algorithms</subject><subject>data security</subject><subject>Deep learning</subject><subject>Empirical analysis</subject><subject>Inference</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>privacy attack</subject><subject>Reinforcement learning</subject><subject>Supervised learning</subject><subject>Trajectory analysis</subject><issn>0954-0091</issn><issn>1360-0494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwCUiWWKeMHTtxdqCqPKRKbICt5TjjKiVxip2C8vcktGxZzWLOvaM5hFwzWDBQcAuFFAAFW3Dg6YJzxriAEzJjaQYJiEKcktnEJBN0Ti5i3AKABMZm5H3V7upQW9PQ2O-rgXaO7kL9ZexAa-8woLdITd8b-0HNxtQ-9rRC3NGA474LFlv0PW3QBF_7DW27Cpt4Sc6caSJeHeecvD2sXpdPyfrl8Xl5v05sqmSfCF5lyglemDy1XCmLkpelLLkoVZbnWSlKJ7mC3JVYoHTOAqjMgCsLZAIwnZObQ-8udJ97jL3edvvgx5OaF5BDpgrJRkoeKBu6GAM6Pb7YmjBoBnpSqP8U6kmhPiocc3eH3O-nrfnuQlPp3gxNF1ww3tZRp_9X_ADr5XiU</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Zhou, Huaicheng</creator><creator>Mo, Kanghua</creator><creator>Huang, Teng</creator><creator>Li, Yongjin</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>NAPCQ</scope></search><sort><creationdate>20231231</creationdate><title>Empirical study of privacy inference attack against deep reinforcement learning models</title><author>Zhou, Huaicheng ; Mo, Kanghua ; Huang, Teng ; Li, Yongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-42d68f429a73c288ce52bb5b24b86776b4bf52807fbe9e5ffc0086a0fb9e140e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adversarial attack</topic><topic>Algorithms</topic><topic>data security</topic><topic>Deep learning</topic><topic>Empirical analysis</topic><topic>Inference</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>privacy attack</topic><topic>Reinforcement learning</topic><topic>Supervised learning</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huaicheng</creatorcontrib><creatorcontrib>Mo, Kanghua</creatorcontrib><creatorcontrib>Huang, Teng</creatorcontrib><creatorcontrib>Li, Yongjin</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Connection science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Huaicheng</au><au>Mo, Kanghua</au><au>Huang, Teng</au><au>Li, Yongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical study of privacy inference attack against deep reinforcement learning models</atitle><jtitle>Connection science</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>35</volume><issue>1</issue><issn>0954-0091</issn><eissn>1360-0494</eissn><abstract>Most studies on privacy in machine learning have primarily focused on supervised learning, with little research on privacy concerns in reinforcement learning. However, our study has demonstrated that observation information can be extracted through trajectory analysis. In this paper, we propose a variable information inference attack targeting the observation space of policy models, which is categorised into two types: observed value inference attack and observed variable inference. Our algorithm has demonstrated a high success rate in privacy inference attacks for both types of observation information.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/09540091.2023.2211240</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-0091
ispartof Connection science, 2023-12, Vol.35 (1)
issn 0954-0091
1360-0494
language eng
recordid cdi_proquest_journals_2907068951
source Taylor & Francis Open Access; Alma/SFX Local Collection
subjects adversarial attack
Algorithms
data security
Deep learning
Empirical analysis
Inference
Machine learning
Privacy
privacy attack
Reinforcement learning
Supervised learning
Trajectory analysis
title Empirical study of privacy inference attack against deep reinforcement learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20study%20of%20privacy%20inference%20attack%20against%20deep%20reinforcement%20learning%20models&rft.jtitle=Connection%20science&rft.au=Zhou,%20Huaicheng&rft.date=2023-12-31&rft.volume=35&rft.issue=1&rft.issn=0954-0091&rft.eissn=1360-0494&rft_id=info:doi/10.1080/09540091.2023.2211240&rft_dat=%3Cproquest_infor%3E2907068951%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907068951&rft_id=info:pmid/&rfr_iscdi=true