Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models

The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2023, Vol.14 (11)
Hauptverfasser: Tarek, Salsabil, Noaman, Hatem M., Kayed, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title International journal of advanced computer science & applications
container_volume 14
creator Tarek, Salsabil
Noaman, Hatem M.
Kayed, Mohammed
description The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble achieving 76.13%. DL models, such as FCN, demonstrated test accuracy of 81% with cross validation. These findings contribute to natural language processing by demonstrating the potential of ensemble learning for ML models and the DL models' detailed pattern-capturing capacity.
doi_str_mv 10.14569/IJACSA.2023.01411100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2906866664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906866664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-76d599bd54e91e2c7eead37eecbee41d66e1e3ccd3f09522912e914c1218b5433</originalsourceid><addsrcrecordid>eNpFUE1LAzEQDaJgqf0JQsDz1nxssrveSq26UlFRwVvIJtM2pc3WZIv4701bpXOYGd68ecM8hC4pGdJcyOq6fhyN30ZDRhgfEppTSgk5QT1GhcyEKMjpvi8zSorPczSIcUlS8IrJkvfQduIX2hvn5_h1C7Fzrccv2oWIawu-czNn9B78dt0CT3yEdbMCPAUdfFq6wbXvYB4SJyk8abNw_jjF2lt8C7A5Ik-thVW8QGczvYow-Kt99HE3eR8_ZNPn-3o8mmaGFbLLCmlFVTVW5FBRYKYA0JanbBqAnFopgQI3xvIZqQRjFWWJmBvKaNmInPM-ujrobkL7tXtPLdtt8OmkYhWRpUyRJ5Y4sExoYwwwU5vg1jr8KErU3mR1MFntTFb_JvNf_dNw-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906866664</pqid></control><display><type>article</type><title>Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tarek, Salsabil ; Noaman, Hatem M. ; Kayed, Mohammed</creator><creatorcontrib>Tarek, Salsabil ; Noaman, Hatem M. ; Kayed, Mohammed</creatorcontrib><description>The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble achieving 76.13%. DL models, such as FCN, demonstrated test accuracy of 81% with cross validation. These findings contribute to natural language processing by demonstrating the potential of ensemble learning for ML models and the DL models' detailed pattern-capturing capacity.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2023.01411100</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Classification ; Comparative analysis ; Computer science ; Datasets ; Deep learning ; Ensemble learning ; Investigations ; Language ; Machine learning ; Natural language processing ; Neural networks ; Performance evaluation ; Questions ; Search engines ; Semantics ; Software ; Text categorization</subject><ispartof>International journal of advanced computer science &amp; applications, 2023, Vol.14 (11)</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Tarek, Salsabil</creatorcontrib><creatorcontrib>Noaman, Hatem M.</creatorcontrib><creatorcontrib>Kayed, Mohammed</creatorcontrib><title>Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models</title><title>International journal of advanced computer science &amp; applications</title><description>The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble achieving 76.13%. DL models, such as FCN, demonstrated test accuracy of 81% with cross validation. These findings contribute to natural language processing by demonstrating the potential of ensemble learning for ML models and the DL models' detailed pattern-capturing capacity.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Ensemble learning</subject><subject>Investigations</subject><subject>Language</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Questions</subject><subject>Search engines</subject><subject>Semantics</subject><subject>Software</subject><subject>Text categorization</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFUE1LAzEQDaJgqf0JQsDz1nxssrveSq26UlFRwVvIJtM2pc3WZIv4701bpXOYGd68ecM8hC4pGdJcyOq6fhyN30ZDRhgfEppTSgk5QT1GhcyEKMjpvi8zSorPczSIcUlS8IrJkvfQduIX2hvn5_h1C7Fzrccv2oWIawu-czNn9B78dt0CT3yEdbMCPAUdfFq6wbXvYB4SJyk8abNw_jjF2lt8C7A5Ik-thVW8QGczvYow-Kt99HE3eR8_ZNPn-3o8mmaGFbLLCmlFVTVW5FBRYKYA0JanbBqAnFopgQI3xvIZqQRjFWWJmBvKaNmInPM-ujrobkL7tXtPLdtt8OmkYhWRpUyRJ5Y4sExoYwwwU5vg1jr8KErU3mR1MFntTFb_JvNf_dNw-w</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Tarek, Salsabil</creator><creator>Noaman, Hatem M.</creator><creator>Kayed, Mohammed</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models</title><author>Tarek, Salsabil ; Noaman, Hatem M. ; Kayed, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-76d599bd54e91e2c7eead37eecbee41d66e1e3ccd3f09522912e914c1218b5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Ensemble learning</topic><topic>Investigations</topic><topic>Language</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Questions</topic><topic>Search engines</topic><topic>Semantics</topic><topic>Software</topic><topic>Text categorization</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarek, Salsabil</creatorcontrib><creatorcontrib>Noaman, Hatem M.</creatorcontrib><creatorcontrib>Kayed, Mohammed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarek, Salsabil</au><au>Noaman, Hatem M.</au><au>Kayed, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>11</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble achieving 76.13%. DL models, such as FCN, demonstrated test accuracy of 81% with cross validation. These findings contribute to natural language processing by demonstrating the potential of ensemble learning for ML models and the DL models' detailed pattern-capturing capacity.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2023.01411100</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2023, Vol.14 (11)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2906866664
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Artificial intelligence
Classification
Comparative analysis
Computer science
Datasets
Deep learning
Ensemble learning
Investigations
Language
Machine learning
Natural language processing
Neural networks
Performance evaluation
Questions
Search engines
Semantics
Software
Text categorization
title Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Question%20Pairs%20Identification%20with%20Ensemble%20Learning:%20Integrating%20Machine%20Learning%20and%20Deep%20Learning%20Models&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Tarek,%20Salsabil&rft.date=2023&rft.volume=14&rft.issue=11&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2023.01411100&rft_dat=%3Cproquest_cross%3E2906866664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906866664&rft_id=info:pmid/&rfr_iscdi=true