Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models
The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble ac...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2023, Vol.14 (11) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 14 |
creator | Tarek, Salsabil Noaman, Hatem M. Kayed, Mohammed |
description | The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble achieving 76.13%. DL models, such as FCN, demonstrated test accuracy of 81% with cross validation. These findings contribute to natural language processing by demonstrating the potential of ensemble learning for ML models and the DL models' detailed pattern-capturing capacity. |
doi_str_mv | 10.14569/IJACSA.2023.01411100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2906866664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906866664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-76d599bd54e91e2c7eead37eecbee41d66e1e3ccd3f09522912e914c1218b5433</originalsourceid><addsrcrecordid>eNpFUE1LAzEQDaJgqf0JQsDz1nxssrveSq26UlFRwVvIJtM2pc3WZIv4701bpXOYGd68ecM8hC4pGdJcyOq6fhyN30ZDRhgfEppTSgk5QT1GhcyEKMjpvi8zSorPczSIcUlS8IrJkvfQduIX2hvn5_h1C7Fzrccv2oWIawu-czNn9B78dt0CT3yEdbMCPAUdfFq6wbXvYB4SJyk8abNw_jjF2lt8C7A5Ik-thVW8QGczvYow-Kt99HE3eR8_ZNPn-3o8mmaGFbLLCmlFVTVW5FBRYKYA0JanbBqAnFopgQI3xvIZqQRjFWWJmBvKaNmInPM-ujrobkL7tXtPLdtt8OmkYhWRpUyRJ5Y4sExoYwwwU5vg1jr8KErU3mR1MFntTFb_JvNf_dNw-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906866664</pqid></control><display><type>article</type><title>Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tarek, Salsabil ; Noaman, Hatem M. ; Kayed, Mohammed</creator><creatorcontrib>Tarek, Salsabil ; Noaman, Hatem M. ; Kayed, Mohammed</creatorcontrib><description>The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble achieving 76.13%. DL models, such as FCN, demonstrated test accuracy of 81% with cross validation. These findings contribute to natural language processing by demonstrating the potential of ensemble learning for ML models and the DL models' detailed pattern-capturing capacity.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2023.01411100</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Classification ; Comparative analysis ; Computer science ; Datasets ; Deep learning ; Ensemble learning ; Investigations ; Language ; Machine learning ; Natural language processing ; Neural networks ; Performance evaluation ; Questions ; Search engines ; Semantics ; Software ; Text categorization</subject><ispartof>International journal of advanced computer science & applications, 2023, Vol.14 (11)</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Tarek, Salsabil</creatorcontrib><creatorcontrib>Noaman, Hatem M.</creatorcontrib><creatorcontrib>Kayed, Mohammed</creatorcontrib><title>Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models</title><title>International journal of advanced computer science & applications</title><description>The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble achieving 76.13%. DL models, such as FCN, demonstrated test accuracy of 81% with cross validation. These findings contribute to natural language processing by demonstrating the potential of ensemble learning for ML models and the DL models' detailed pattern-capturing capacity.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Ensemble learning</subject><subject>Investigations</subject><subject>Language</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Questions</subject><subject>Search engines</subject><subject>Semantics</subject><subject>Software</subject><subject>Text categorization</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFUE1LAzEQDaJgqf0JQsDz1nxssrveSq26UlFRwVvIJtM2pc3WZIv4701bpXOYGd68ecM8hC4pGdJcyOq6fhyN30ZDRhgfEppTSgk5QT1GhcyEKMjpvi8zSorPczSIcUlS8IrJkvfQduIX2hvn5_h1C7Fzrccv2oWIawu-czNn9B78dt0CT3yEdbMCPAUdfFq6wbXvYB4SJyk8abNw_jjF2lt8C7A5Ik-thVW8QGczvYow-Kt99HE3eR8_ZNPn-3o8mmaGFbLLCmlFVTVW5FBRYKYA0JanbBqAnFopgQI3xvIZqQRjFWWJmBvKaNmInPM-ujrobkL7tXtPLdtt8OmkYhWRpUyRJ5Y4sExoYwwwU5vg1jr8KErU3mR1MFntTFb_JvNf_dNw-w</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Tarek, Salsabil</creator><creator>Noaman, Hatem M.</creator><creator>Kayed, Mohammed</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models</title><author>Tarek, Salsabil ; Noaman, Hatem M. ; Kayed, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-76d599bd54e91e2c7eead37eecbee41d66e1e3ccd3f09522912e914c1218b5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Ensemble learning</topic><topic>Investigations</topic><topic>Language</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Questions</topic><topic>Search engines</topic><topic>Semantics</topic><topic>Software</topic><topic>Text categorization</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarek, Salsabil</creatorcontrib><creatorcontrib>Noaman, Hatem M.</creatorcontrib><creatorcontrib>Kayed, Mohammed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarek, Salsabil</au><au>Noaman, Hatem M.</au><au>Kayed, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>11</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>The effectiveness of machine learning (ML) and deep learning (DL) models on the Quora question pairs dataset is investigated in this study. ML models, including AdaBoost, reached 73.44% test accuracy, while ensemble learning approaches enhanced outcomes even further, with the Hard-Voting Ensemble achieving 76.13%. DL models, such as FCN, demonstrated test accuracy of 81% with cross validation. These findings contribute to natural language processing by demonstrating the potential of ensemble learning for ML models and the DL models' detailed pattern-capturing capacity.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2023.01411100</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2023, Vol.14 (11) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2906866664 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Artificial intelligence Classification Comparative analysis Computer science Datasets Deep learning Ensemble learning Investigations Language Machine learning Natural language processing Neural networks Performance evaluation Questions Search engines Semantics Software Text categorization |
title | Enhancing Question Pairs Identification with Ensemble Learning: Integrating Machine Learning and Deep Learning Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Question%20Pairs%20Identification%20with%20Ensemble%20Learning:%20Integrating%20Machine%20Learning%20and%20Deep%20Learning%20Models&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Tarek,%20Salsabil&rft.date=2023&rft.volume=14&rft.issue=11&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2023.01411100&rft_dat=%3Cproquest_cross%3E2906866664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906866664&rft_id=info:pmid/&rfr_iscdi=true |