Evolution of Oceanography of the Central Northwest Pacific Over the Past 10 Million Years With Focus on Late Miocene Global Cooling

Since the middle Miocene climatic transition, the Earth's climate has steadily cooled. The late Miocene global cooling (LMGC) and the Northern Hemisphere Glaciation (NHG) were two key cooling events occurring during this time. To better understand the mechanisms underlying these cooling events,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Paleoceanography and paleoclimatology 2023-12, Vol.38 (12), p.n/a
1. Verfasser: Matsuzaki, Kenji M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the middle Miocene climatic transition, the Earth's climate has steadily cooled. The late Miocene global cooling (LMGC) and the Northern Hemisphere Glaciation (NHG) were two key cooling events occurring during this time. To better understand the mechanisms underlying these cooling events, changes in radiolarian microfossil assemblages were examined in this study, aiming at the reconstructing of oceanographic changes that have occurred at Ocean Drilling Program site 1208 during the last 10 million years. Sea surface temperatures (SSTs) were reconstructed based on radiolarian species that were extant 0–10 million years ago. Reconstructed SSTs were then compared with previously published alkenone‐based SSTs at site 1208, and it was found that overall, using SSTs based only on extant radiolarian species yielded a correct record for the last 10 million years. However, large discrepancies were observed between radiolarian‐ and alkenone‐based SSTs during LMGC and the NHG. These discrepancies were attributed to the sustained influence of subsurface water (at depths from ∼50 to 100 m) on assemblages of radiolarians during extreme cooling events. Relative abundances of other radiolarian groups indicated that during LMGC, there was a reorganization of the regional oceanography that probably weakened the Pacific meridional overturning circulation, increased the meridional temperature gradient, and caused a southward migration of the subtropical front. Probably, the North Pacific intermediate water expanded southeastward during NHG. Key Points Radiolarian based sea surface temperature for the last 10 My is mostly consistent with alkenone based Sea Surface Temperature During the late Miocene global cooling, there is reorganization in thermohaline circulation and in the Meridional Thermal Gradient The Northern Hemisphere Glaciation caused an increase in the North Pacific Intermediate Water production rates
ISSN:2572-4517
2572-4525
DOI:10.1029/2023PA004789