Dealing With Jamming Attacks in Uplink Pairwise NOMA Using Outage Analysis, Smart Relaying, and Redundant Transmissions

This study focuses on optimizing the performance of an uplink pairwise Non-Orthogonal Multiple Access (NOMA) scenario with and without the support of a relayer, while subject to jamming attacks. We consider two different relaying protocols, one where the sources and the destination are within range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Communications Society 2024, Vol.5, p.112-126
Hauptverfasser: Dao, Van-Lan, Uhlemann, Elisabeth, Girs, Svetlana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 112
container_title IEEE open journal of the Communications Society
container_volume 5
creator Dao, Van-Lan
Uhlemann, Elisabeth
Girs, Svetlana
description This study focuses on optimizing the performance of an uplink pairwise Non-Orthogonal Multiple Access (NOMA) scenario with and without the support of a relayer, while subject to jamming attacks. We consider two different relaying protocols, one where the sources and the destination are within range of each other and one where they are not. The relay node can be mobile, e.g., a mobile base station, an unmanned aerial vehicle (UAV) or a stationary node that is chosen as a result of a relay selection procedure. We also benchmark with a NOMA retransmission protocol and an Orthogonal Multiple Access (OMA) scheme without a relayer. We analyze, adjust and compare the four protocols for different settings using outage analysis, which is an efficient tool for establishing communication reliability for both individual nodes and the overall wireless network. Closed-form expressions of outage probabilities can be adopted by deep reinforcement learning (RL) algorithms to optimize wireless networks online. Accordingly, we first derive closed-form expressions for the individual outage probability (IOP) of each source node link and the relayer link using both pairwise NOMA and OMA. Next, we analyze the IOP for one packet (IOPP) for each source node considering all possible links between the source node to the destination, taking both phases into account for the considered protocols when operating in Nakagami- m fading channels. The overall outage probability for all packets (OOPP) is defined as the maximum IOPP obtained among the source nodes. This metric is useful to optimize the whole wireless network, e.g., to ensure fairness among the source nodes. Then, we propose a method using deep RL where the OOPP is used as a reward function in order to adapt to the dynamic environment associated with jamming attacks. Finally, we discuss valuable guidelines for enhancing the communication reliability of the legitimate system.
doi_str_mv 10.1109/OJCOMS.2023.3339175
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2906591832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10342734</ieee_id><doaj_id>oai_doaj_org_article_6a53a95aee0847de959b005fa039bd2d</doaj_id><sourcerecordid>2906591832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b4b01899a01758f9d9ed6ac611d6bbcb0fc747fcee05385957f2299f4fad864e3</originalsourceid><addsrcrecordid>eNpVkVtv1DAQhSMEElXbXwAPlnjdXXxP_BhtKbRqCaJd4M2axM7W21wWO9Fq_32dpkLlyZ6Zcz6NfZLkA8ErQrD6XFyvi9u7FcWUrRhjiqTiTXJCJedLQsWft6_u75PzEHYYYyoIIYyfJIcLC43rtui3Gx7QNbTtVOTDANVjQK5Dm30cP6If4PzBBYu-F7c52oRJVYwDbC3KO2iOwYUFumvBD-inbeAY5wsEnYmVGTsD3YDuPXShdSG4vgtnybsammDPX87TZHP55X79bXlTfL1a5zfLiik5LEteYpIpBTi-KquVUdZIqCQhRpZlVeK6SnlaV9ZiwTKhRFpTqlTNazCZ5JadJlcz1_Sw03vv4opH3YPTz43eb3Xc2VWN1RIEAyUgsjKeGquEKjEWNWCmSkNNZC1mVjjY_Vj-R7twv_JnWmsetORM0Cj_NMv3vv872jDoXT_6-FlBU4WlUCRjk4rNqsr3IXhb_8MSrKd89ZyvnvLVL_lG18fZ5ay1rxyM05Rx9gRcrqJK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906591832</pqid></control><display><type>article</type><title>Dealing With Jamming Attacks in Uplink Pairwise NOMA Using Outage Analysis, Smart Relaying, and Redundant Transmissions</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dao, Van-Lan ; Uhlemann, Elisabeth ; Girs, Svetlana</creator><creatorcontrib>Dao, Van-Lan ; Uhlemann, Elisabeth ; Girs, Svetlana</creatorcontrib><description>This study focuses on optimizing the performance of an uplink pairwise Non-Orthogonal Multiple Access (NOMA) scenario with and without the support of a relayer, while subject to jamming attacks. We consider two different relaying protocols, one where the sources and the destination are within range of each other and one where they are not. The relay node can be mobile, e.g., a mobile base station, an unmanned aerial vehicle (UAV) or a stationary node that is chosen as a result of a relay selection procedure. We also benchmark with a NOMA retransmission protocol and an Orthogonal Multiple Access (OMA) scheme without a relayer. We analyze, adjust and compare the four protocols for different settings using outage analysis, which is an efficient tool for establishing communication reliability for both individual nodes and the overall wireless network. Closed-form expressions of outage probabilities can be adopted by deep reinforcement learning (RL) algorithms to optimize wireless networks online. Accordingly, we first derive closed-form expressions for the individual outage probability (IOP) of each source node link and the relayer link using both pairwise NOMA and OMA. Next, we analyze the IOP for one packet (IOPP) for each source node considering all possible links between the source node to the destination, taking both phases into account for the considered protocols when operating in Nakagami-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;m &lt;/tex-math&gt;&lt;/inline-formula&gt; fading channels. The overall outage probability for all packets (OOPP) is defined as the maximum IOPP obtained among the source nodes. This metric is useful to optimize the whole wireless network, e.g., to ensure fairness among the source nodes. Then, we propose a method using deep RL where the OOPP is used as a reward function in order to adapt to the dynamic environment associated with jamming attacks. Finally, we discuss valuable guidelines for enhancing the communication reliability of the legitimate system.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2023.3339175</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Closed form solutions ; cooperative NOMA ; deep reinforcement learning ; Dynamic decoding order ; Exact solutions ; imperfect CSI ; Jamming ; Machine learning ; Nodes ; NOMA ; Nonorthogonal multiple access ; Optimization ; outage performance ; Outages ; Power system reliability ; Probability ; Protocols ; Radio equipment ; Relay ; Relaying ; Reliability ; Unmanned aerial vehicles ; Uplink ; Uplinking ; Wireless networks</subject><ispartof>IEEE open journal of the Communications Society, 2024, Vol.5, p.112-126</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c396t-b4b01899a01758f9d9ed6ac611d6bbcb0fc747fcee05385957f2299f4fad864e3</cites><orcidid>0000-0001-6497-4099 ; 0000-0001-8109-1685 ; 0000-0001-9589-6986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10342734$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,864,885,2102,4024,27633,27923,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-64352$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Dao, Van-Lan</creatorcontrib><creatorcontrib>Uhlemann, Elisabeth</creatorcontrib><creatorcontrib>Girs, Svetlana</creatorcontrib><title>Dealing With Jamming Attacks in Uplink Pairwise NOMA Using Outage Analysis, Smart Relaying, and Redundant Transmissions</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>This study focuses on optimizing the performance of an uplink pairwise Non-Orthogonal Multiple Access (NOMA) scenario with and without the support of a relayer, while subject to jamming attacks. We consider two different relaying protocols, one where the sources and the destination are within range of each other and one where they are not. The relay node can be mobile, e.g., a mobile base station, an unmanned aerial vehicle (UAV) or a stationary node that is chosen as a result of a relay selection procedure. We also benchmark with a NOMA retransmission protocol and an Orthogonal Multiple Access (OMA) scheme without a relayer. We analyze, adjust and compare the four protocols for different settings using outage analysis, which is an efficient tool for establishing communication reliability for both individual nodes and the overall wireless network. Closed-form expressions of outage probabilities can be adopted by deep reinforcement learning (RL) algorithms to optimize wireless networks online. Accordingly, we first derive closed-form expressions for the individual outage probability (IOP) of each source node link and the relayer link using both pairwise NOMA and OMA. Next, we analyze the IOP for one packet (IOPP) for each source node considering all possible links between the source node to the destination, taking both phases into account for the considered protocols when operating in Nakagami-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;m &lt;/tex-math&gt;&lt;/inline-formula&gt; fading channels. The overall outage probability for all packets (OOPP) is defined as the maximum IOPP obtained among the source nodes. This metric is useful to optimize the whole wireless network, e.g., to ensure fairness among the source nodes. Then, we propose a method using deep RL where the OOPP is used as a reward function in order to adapt to the dynamic environment associated with jamming attacks. Finally, we discuss valuable guidelines for enhancing the communication reliability of the legitimate system.</description><subject>Algorithms</subject><subject>Closed form solutions</subject><subject>cooperative NOMA</subject><subject>deep reinforcement learning</subject><subject>Dynamic decoding order</subject><subject>Exact solutions</subject><subject>imperfect CSI</subject><subject>Jamming</subject><subject>Machine learning</subject><subject>Nodes</subject><subject>NOMA</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>outage performance</subject><subject>Outages</subject><subject>Power system reliability</subject><subject>Probability</subject><subject>Protocols</subject><subject>Radio equipment</subject><subject>Relay</subject><subject>Relaying</subject><subject>Reliability</subject><subject>Unmanned aerial vehicles</subject><subject>Uplink</subject><subject>Uplinking</subject><subject>Wireless networks</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkVtv1DAQhSMEElXbXwAPlnjdXXxP_BhtKbRqCaJd4M2axM7W21wWO9Fq_32dpkLlyZ6Zcz6NfZLkA8ErQrD6XFyvi9u7FcWUrRhjiqTiTXJCJedLQsWft6_u75PzEHYYYyoIIYyfJIcLC43rtui3Gx7QNbTtVOTDANVjQK5Dm30cP6If4PzBBYu-F7c52oRJVYwDbC3KO2iOwYUFumvBD-inbeAY5wsEnYmVGTsD3YDuPXShdSG4vgtnybsammDPX87TZHP55X79bXlTfL1a5zfLiik5LEteYpIpBTi-KquVUdZIqCQhRpZlVeK6SnlaV9ZiwTKhRFpTqlTNazCZ5JadJlcz1_Sw03vv4opH3YPTz43eb3Xc2VWN1RIEAyUgsjKeGquEKjEWNWCmSkNNZC1mVjjY_Vj-R7twv_JnWmsetORM0Cj_NMv3vv872jDoXT_6-FlBU4WlUCRjk4rNqsr3IXhb_8MSrKd89ZyvnvLVL_lG18fZ5ay1rxyM05Rx9gRcrqJK</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Dao, Van-Lan</creator><creator>Uhlemann, Elisabeth</creator><creator>Girs, Svetlana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ABGEM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF7</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6497-4099</orcidid><orcidid>https://orcid.org/0000-0001-8109-1685</orcidid><orcidid>https://orcid.org/0000-0001-9589-6986</orcidid></search><sort><creationdate>2024</creationdate><title>Dealing With Jamming Attacks in Uplink Pairwise NOMA Using Outage Analysis, Smart Relaying, and Redundant Transmissions</title><author>Dao, Van-Lan ; Uhlemann, Elisabeth ; Girs, Svetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b4b01899a01758f9d9ed6ac611d6bbcb0fc747fcee05385957f2299f4fad864e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Closed form solutions</topic><topic>cooperative NOMA</topic><topic>deep reinforcement learning</topic><topic>Dynamic decoding order</topic><topic>Exact solutions</topic><topic>imperfect CSI</topic><topic>Jamming</topic><topic>Machine learning</topic><topic>Nodes</topic><topic>NOMA</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>outage performance</topic><topic>Outages</topic><topic>Power system reliability</topic><topic>Probability</topic><topic>Protocols</topic><topic>Radio equipment</topic><topic>Relay</topic><topic>Relaying</topic><topic>Reliability</topic><topic>Unmanned aerial vehicles</topic><topic>Uplink</topic><topic>Uplinking</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dao, Van-Lan</creatorcontrib><creatorcontrib>Uhlemann, Elisabeth</creatorcontrib><creatorcontrib>Girs, Svetlana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Mälardalens högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Mälardalens högskola</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dao, Van-Lan</au><au>Uhlemann, Elisabeth</au><au>Girs, Svetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dealing With Jamming Attacks in Uplink Pairwise NOMA Using Outage Analysis, Smart Relaying, and Redundant Transmissions</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>112</spage><epage>126</epage><pages>112-126</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>This study focuses on optimizing the performance of an uplink pairwise Non-Orthogonal Multiple Access (NOMA) scenario with and without the support of a relayer, while subject to jamming attacks. We consider two different relaying protocols, one where the sources and the destination are within range of each other and one where they are not. The relay node can be mobile, e.g., a mobile base station, an unmanned aerial vehicle (UAV) or a stationary node that is chosen as a result of a relay selection procedure. We also benchmark with a NOMA retransmission protocol and an Orthogonal Multiple Access (OMA) scheme without a relayer. We analyze, adjust and compare the four protocols for different settings using outage analysis, which is an efficient tool for establishing communication reliability for both individual nodes and the overall wireless network. Closed-form expressions of outage probabilities can be adopted by deep reinforcement learning (RL) algorithms to optimize wireless networks online. Accordingly, we first derive closed-form expressions for the individual outage probability (IOP) of each source node link and the relayer link using both pairwise NOMA and OMA. Next, we analyze the IOP for one packet (IOPP) for each source node considering all possible links between the source node to the destination, taking both phases into account for the considered protocols when operating in Nakagami-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;m &lt;/tex-math&gt;&lt;/inline-formula&gt; fading channels. The overall outage probability for all packets (OOPP) is defined as the maximum IOPP obtained among the source nodes. This metric is useful to optimize the whole wireless network, e.g., to ensure fairness among the source nodes. Then, we propose a method using deep RL where the OOPP is used as a reward function in order to adapt to the dynamic environment associated with jamming attacks. Finally, we discuss valuable guidelines for enhancing the communication reliability of the legitimate system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCOMS.2023.3339175</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6497-4099</orcidid><orcidid>https://orcid.org/0000-0001-8109-1685</orcidid><orcidid>https://orcid.org/0000-0001-9589-6986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-125X
ispartof IEEE open journal of the Communications Society, 2024, Vol.5, p.112-126
issn 2644-125X
2644-125X
language eng
recordid cdi_proquest_journals_2906591832
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Closed form solutions
cooperative NOMA
deep reinforcement learning
Dynamic decoding order
Exact solutions
imperfect CSI
Jamming
Machine learning
Nodes
NOMA
Nonorthogonal multiple access
Optimization
outage performance
Outages
Power system reliability
Probability
Protocols
Radio equipment
Relay
Relaying
Reliability
Unmanned aerial vehicles
Uplink
Uplinking
Wireless networks
title Dealing With Jamming Attacks in Uplink Pairwise NOMA Using Outage Analysis, Smart Relaying, and Redundant Transmissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dealing%20With%20Jamming%20Attacks%20in%20Uplink%20Pairwise%20NOMA%20Using%20Outage%20Analysis,%20Smart%20Relaying,%20and%20Redundant%20Transmissions&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Dao,%20Van-Lan&rft.date=2024&rft.volume=5&rft.spage=112&rft.epage=126&rft.pages=112-126&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2023.3339175&rft_dat=%3Cproquest_ieee_%3E2906591832%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906591832&rft_id=info:pmid/&rft_ieee_id=10342734&rft_doaj_id=oai_doaj_org_article_6a53a95aee0847de959b005fa039bd2d&rfr_iscdi=true