Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium

This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. a journal of the Russian Academy of Sciences. Physics 2023-04, Vol.68 (4), p.120-124
Hauptverfasser: Babeshko, V. A., Evdokimova, O. V., Babeshko, O. M., Zaretskaya, M. V., Evdokimov, V. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 4
container_start_page 120
container_title Doklady. a journal of the Russian Academy of Sciences. Physics
container_volume 68
creator Babeshko, V. A.
Evdokimova, O. V.
Babeshko, O. M.
Zaretskaya, M. V.
Evdokimov, V. S.
description This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies.
doi_str_mv 10.1134/S1028335823040018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2906265979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906265979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ce31293d780c5309f342eb0c23e5c6eba02efd317c74f1b502c4e9ab5848cd643</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j85G-WEqoVKgpVXIbJ5E6b2sy0MwlYcOE7-IY-iYlRXIirey_fOefCQeiUknNKeXgxp4SlnEcp4yQkhKZ7aESjmAWxIHy_2zsc9PwQHXm_IoQIzukIvU5epGrw3K7bprIGW42bJeCnCgy4j7f3qd1oPNm2cqDmi85hUYNpsLYOZ9Y0fcK9s8Uaav-T8LAE63b9lTmpnj2uDJZ4JnfgoMS3UFZtfYwOtFx7OPmeY_R4NXnIpsHs7vomu5wFitO4CRRwygQvk5SoiBOhecigIIpxiFQMhSQMdMlpopJQ0yIiTIUgZBGlYarKOORjdDbkbpzdtuCbfGVbZ7qXORMkZnEkEtGp6KBSznrvQOcbV9XS7XJK8r7k_E_JnYcNHt9pzQLcb_L_pk-AO37I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906265979</pqid></control><display><type>article</type><title>Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium</title><source>SpringerLink Journals</source><creator>Babeshko, V. A. ; Evdokimova, O. V. ; Babeshko, O. M. ; Zaretskaya, M. V. ; Evdokimov, V. S.</creator><creatorcontrib>Babeshko, V. A. ; Evdokimova, O. V. ; Babeshko, O. M. ; Zaretskaya, M. V. ; Evdokimov, V. S.</creatorcontrib><description>This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies.</description><identifier>ISSN: 1028-3358</identifier><identifier>EISSN: 1562-6903</identifier><identifier>DOI: 10.1134/S1028335823040018</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Classical Mechanics ; Continuum mechanics ; Cracks ; Differential equations ; Exact solutions ; Formability ; Fourier transforms ; Integral equations ; Linear algebra ; Mathematical and Computational Physics ; Mechanics ; Meromorphic functions ; Multilayers ; Physics ; Physics and Astronomy ; Segments ; Theoretical ; Wiener Hopf equations</subject><ispartof>Doklady. a journal of the Russian Academy of Sciences. Physics, 2023-04, Vol.68 (4), p.120-124</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1028-3358, Doklady Physics, 2023, Vol. 68, No. 4, pp. 120–124. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Doklady Rossiiskoi Akademii Nauk. Fizika, Tekhnicheskie Nauki, 2023, Vol. 509, pp. 39–44.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ce31293d780c5309f342eb0c23e5c6eba02efd317c74f1b502c4e9ab5848cd643</citedby><cites>FETCH-LOGICAL-c316t-ce31293d780c5309f342eb0c23e5c6eba02efd317c74f1b502c4e9ab5848cd643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1028335823040018$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1028335823040018$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Babeshko, V. A.</creatorcontrib><creatorcontrib>Evdokimova, O. V.</creatorcontrib><creatorcontrib>Babeshko, O. M.</creatorcontrib><creatorcontrib>Zaretskaya, M. V.</creatorcontrib><creatorcontrib>Evdokimov, V. S.</creatorcontrib><title>Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium</title><title>Doklady. a journal of the Russian Academy of Sciences. Physics</title><addtitle>Dokl. Phys</addtitle><description>This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies.</description><subject>Boundary value problems</subject><subject>Classical Mechanics</subject><subject>Continuum mechanics</subject><subject>Cracks</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Formability</subject><subject>Fourier transforms</subject><subject>Integral equations</subject><subject>Linear algebra</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanics</subject><subject>Meromorphic functions</subject><subject>Multilayers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Segments</subject><subject>Theoretical</subject><subject>Wiener Hopf equations</subject><issn>1028-3358</issn><issn>1562-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j85G-WEqoVKgpVXIbJ5E6b2sy0MwlYcOE7-IY-iYlRXIirey_fOefCQeiUknNKeXgxp4SlnEcp4yQkhKZ7aESjmAWxIHy_2zsc9PwQHXm_IoQIzukIvU5epGrw3K7bprIGW42bJeCnCgy4j7f3qd1oPNm2cqDmi85hUYNpsLYOZ9Y0fcK9s8Uaav-T8LAE63b9lTmpnj2uDJZ4JnfgoMS3UFZtfYwOtFx7OPmeY_R4NXnIpsHs7vomu5wFitO4CRRwygQvk5SoiBOhecigIIpxiFQMhSQMdMlpopJQ0yIiTIUgZBGlYarKOORjdDbkbpzdtuCbfGVbZ7qXORMkZnEkEtGp6KBSznrvQOcbV9XS7XJK8r7k_E_JnYcNHt9pzQLcb_L_pk-AO37I</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Babeshko, V. A.</creator><creator>Evdokimova, O. V.</creator><creator>Babeshko, O. M.</creator><creator>Zaretskaya, M. V.</creator><creator>Evdokimov, V. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium</title><author>Babeshko, V. A. ; Evdokimova, O. V. ; Babeshko, O. M. ; Zaretskaya, M. V. ; Evdokimov, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ce31293d780c5309f342eb0c23e5c6eba02efd317c74f1b502c4e9ab5848cd643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Classical Mechanics</topic><topic>Continuum mechanics</topic><topic>Cracks</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Formability</topic><topic>Fourier transforms</topic><topic>Integral equations</topic><topic>Linear algebra</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanics</topic><topic>Meromorphic functions</topic><topic>Multilayers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Segments</topic><topic>Theoretical</topic><topic>Wiener Hopf equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babeshko, V. A.</creatorcontrib><creatorcontrib>Evdokimova, O. V.</creatorcontrib><creatorcontrib>Babeshko, O. M.</creatorcontrib><creatorcontrib>Zaretskaya, M. V.</creatorcontrib><creatorcontrib>Evdokimov, V. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babeshko, V. A.</au><au>Evdokimova, O. V.</au><au>Babeshko, O. M.</au><au>Zaretskaya, M. V.</au><au>Evdokimov, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium</atitle><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle><stitle>Dokl. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>68</volume><issue>4</issue><spage>120</spage><epage>124</epage><pages>120-124</pages><issn>1028-3358</issn><eissn>1562-6903</eissn><abstract>This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028335823040018</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1028-3358
ispartof Doklady. a journal of the Russian Academy of Sciences. Physics, 2023-04, Vol.68 (4), p.120-124
issn 1028-3358
1562-6903
language eng
recordid cdi_proquest_journals_2906265979
source SpringerLink Journals
subjects Boundary value problems
Classical Mechanics
Continuum mechanics
Cracks
Differential equations
Exact solutions
Formability
Fourier transforms
Integral equations
Linear algebra
Mathematical and Computational Physics
Mechanics
Meromorphic functions
Multilayers
Physics
Physics and Astronomy
Segments
Theoretical
Wiener Hopf equations
title Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Solution%20of%20the%20Wiener%E2%80%93Hopf%20Equation%20on%20the%20Segment%20for%20Contact%20Problems%20of%20the%20Theory%20of%20Cracks%20in%20a%20Layered%20Medium&rft.jtitle=Doklady.%20a%20journal%20of%20the%20Russian%20Academy%20of%20Sciences.%20Physics&rft.au=Babeshko,%20V.%20A.&rft.date=2023-04-01&rft.volume=68&rft.issue=4&rft.spage=120&rft.epage=124&rft.pages=120-124&rft.issn=1028-3358&rft.eissn=1562-6903&rft_id=info:doi/10.1134/S1028335823040018&rft_dat=%3Cproquest_cross%3E2906265979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906265979&rft_id=info:pmid/&rfr_iscdi=true