Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium
This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a...
Gespeichert in:
Veröffentlicht in: | Doklady. a journal of the Russian Academy of Sciences. Physics 2023-04, Vol.68 (4), p.120-124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 4 |
container_start_page | 120 |
container_title | Doklady. a journal of the Russian Academy of Sciences. Physics |
container_volume | 68 |
creator | Babeshko, V. A. Evdokimova, O. V. Babeshko, O. M. Zaretskaya, M. V. Evdokimov, V. S. |
description | This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies. |
doi_str_mv | 10.1134/S1028335823040018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2906265979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906265979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ce31293d780c5309f342eb0c23e5c6eba02efd317c74f1b502c4e9ab5848cd643</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j85G-WEqoVKgpVXIbJ5E6b2sy0MwlYcOE7-IY-iYlRXIirey_fOefCQeiUknNKeXgxp4SlnEcp4yQkhKZ7aESjmAWxIHy_2zsc9PwQHXm_IoQIzukIvU5epGrw3K7bprIGW42bJeCnCgy4j7f3qd1oPNm2cqDmi85hUYNpsLYOZ9Y0fcK9s8Uaav-T8LAE63b9lTmpnj2uDJZ4JnfgoMS3UFZtfYwOtFx7OPmeY_R4NXnIpsHs7vomu5wFitO4CRRwygQvk5SoiBOhecigIIpxiFQMhSQMdMlpopJQ0yIiTIUgZBGlYarKOORjdDbkbpzdtuCbfGVbZ7qXORMkZnEkEtGp6KBSznrvQOcbV9XS7XJK8r7k_E_JnYcNHt9pzQLcb_L_pk-AO37I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906265979</pqid></control><display><type>article</type><title>Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium</title><source>SpringerLink Journals</source><creator>Babeshko, V. A. ; Evdokimova, O. V. ; Babeshko, O. M. ; Zaretskaya, M. V. ; Evdokimov, V. S.</creator><creatorcontrib>Babeshko, V. A. ; Evdokimova, O. V. ; Babeshko, O. M. ; Zaretskaya, M. V. ; Evdokimov, V. S.</creatorcontrib><description>This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies.</description><identifier>ISSN: 1028-3358</identifier><identifier>EISSN: 1562-6903</identifier><identifier>DOI: 10.1134/S1028335823040018</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Classical Mechanics ; Continuum mechanics ; Cracks ; Differential equations ; Exact solutions ; Formability ; Fourier transforms ; Integral equations ; Linear algebra ; Mathematical and Computational Physics ; Mechanics ; Meromorphic functions ; Multilayers ; Physics ; Physics and Astronomy ; Segments ; Theoretical ; Wiener Hopf equations</subject><ispartof>Doklady. a journal of the Russian Academy of Sciences. Physics, 2023-04, Vol.68 (4), p.120-124</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1028-3358, Doklady Physics, 2023, Vol. 68, No. 4, pp. 120–124. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Doklady Rossiiskoi Akademii Nauk. Fizika, Tekhnicheskie Nauki, 2023, Vol. 509, pp. 39–44.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ce31293d780c5309f342eb0c23e5c6eba02efd317c74f1b502c4e9ab5848cd643</citedby><cites>FETCH-LOGICAL-c316t-ce31293d780c5309f342eb0c23e5c6eba02efd317c74f1b502c4e9ab5848cd643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1028335823040018$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1028335823040018$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Babeshko, V. A.</creatorcontrib><creatorcontrib>Evdokimova, O. V.</creatorcontrib><creatorcontrib>Babeshko, O. M.</creatorcontrib><creatorcontrib>Zaretskaya, M. V.</creatorcontrib><creatorcontrib>Evdokimov, V. S.</creatorcontrib><title>Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium</title><title>Doklady. a journal of the Russian Academy of Sciences. Physics</title><addtitle>Dokl. Phys</addtitle><description>This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies.</description><subject>Boundary value problems</subject><subject>Classical Mechanics</subject><subject>Continuum mechanics</subject><subject>Cracks</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Formability</subject><subject>Fourier transforms</subject><subject>Integral equations</subject><subject>Linear algebra</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanics</subject><subject>Meromorphic functions</subject><subject>Multilayers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Segments</subject><subject>Theoretical</subject><subject>Wiener Hopf equations</subject><issn>1028-3358</issn><issn>1562-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j85G-WEqoVKgpVXIbJ5E6b2sy0MwlYcOE7-IY-iYlRXIirey_fOefCQeiUknNKeXgxp4SlnEcp4yQkhKZ7aESjmAWxIHy_2zsc9PwQHXm_IoQIzukIvU5epGrw3K7bprIGW42bJeCnCgy4j7f3qd1oPNm2cqDmi85hUYNpsLYOZ9Y0fcK9s8Uaav-T8LAE63b9lTmpnj2uDJZ4JnfgoMS3UFZtfYwOtFx7OPmeY_R4NXnIpsHs7vomu5wFitO4CRRwygQvk5SoiBOhecigIIpxiFQMhSQMdMlpopJQ0yIiTIUgZBGlYarKOORjdDbkbpzdtuCbfGVbZ7qXORMkZnEkEtGp6KBSznrvQOcbV9XS7XJK8r7k_E_JnYcNHt9pzQLcb_L_pk-AO37I</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Babeshko, V. A.</creator><creator>Evdokimova, O. V.</creator><creator>Babeshko, O. M.</creator><creator>Zaretskaya, M. V.</creator><creator>Evdokimov, V. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium</title><author>Babeshko, V. A. ; Evdokimova, O. V. ; Babeshko, O. M. ; Zaretskaya, M. V. ; Evdokimov, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ce31293d780c5309f342eb0c23e5c6eba02efd317c74f1b502c4e9ab5848cd643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Classical Mechanics</topic><topic>Continuum mechanics</topic><topic>Cracks</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Formability</topic><topic>Fourier transforms</topic><topic>Integral equations</topic><topic>Linear algebra</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanics</topic><topic>Meromorphic functions</topic><topic>Multilayers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Segments</topic><topic>Theoretical</topic><topic>Wiener Hopf equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babeshko, V. A.</creatorcontrib><creatorcontrib>Evdokimova, O. V.</creatorcontrib><creatorcontrib>Babeshko, O. M.</creatorcontrib><creatorcontrib>Zaretskaya, M. V.</creatorcontrib><creatorcontrib>Evdokimov, V. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babeshko, V. A.</au><au>Evdokimova, O. V.</au><au>Babeshko, O. M.</au><au>Zaretskaya, M. V.</au><au>Evdokimov, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium</atitle><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle><stitle>Dokl. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>68</volume><issue>4</issue><spage>120</spage><epage>124</epage><pages>120-124</pages><issn>1028-3358</issn><eissn>1562-6903</eissn><abstract>This paper presents an approach that allows us for the first time to construct an exact solution of the Wiener–Hopf integral equations on a finite segment for the case of meromorphic functions in Fourier transforms of the kernel. The Wiener–Hopf integral equation is traditionally considered set on a semi-infinite segment. However, in applications, there are often cases of their application specified on a finite segment. For these purposes, approximate methods of applying these integral equations have been developed. However, when considering the Wiener–Hopf integral equations generated by mixed problems of continuum mechanics and mathematical physics in a multilayer medium of finite thickness, it turned out that these integral equations are solved exactly both on semi-infinite and finite segments. The approach is based on a new modeling method in differential equations and in some types of integral equations. It allows the reduction of Wiener–Hopf integral equations to infinite systems of linear algebraic equations that are solved exactly. The obtained result opens up the possibility of constructing exact solutions to boundary value problems for deformable stamps and cracks of a new type in bounded bodies.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028335823040018</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1028-3358 |
ispartof | Doklady. a journal of the Russian Academy of Sciences. Physics, 2023-04, Vol.68 (4), p.120-124 |
issn | 1028-3358 1562-6903 |
language | eng |
recordid | cdi_proquest_journals_2906265979 |
source | SpringerLink Journals |
subjects | Boundary value problems Classical Mechanics Continuum mechanics Cracks Differential equations Exact solutions Formability Fourier transforms Integral equations Linear algebra Mathematical and Computational Physics Mechanics Meromorphic functions Multilayers Physics Physics and Astronomy Segments Theoretical Wiener Hopf equations |
title | Exact Solution of the Wiener–Hopf Equation on the Segment for Contact Problems of the Theory of Cracks in a Layered Medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Solution%20of%20the%20Wiener%E2%80%93Hopf%20Equation%20on%20the%20Segment%20for%20Contact%20Problems%20of%20the%20Theory%20of%20Cracks%20in%20a%20Layered%20Medium&rft.jtitle=Doklady.%20a%20journal%20of%20the%20Russian%20Academy%20of%20Sciences.%20Physics&rft.au=Babeshko,%20V.%20A.&rft.date=2023-04-01&rft.volume=68&rft.issue=4&rft.spage=120&rft.epage=124&rft.pages=120-124&rft.issn=1028-3358&rft.eissn=1562-6903&rft_id=info:doi/10.1134/S1028335823040018&rft_dat=%3Cproquest_cross%3E2906265979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906265979&rft_id=info:pmid/&rfr_iscdi=true |