Exact Solutions of a Nonlinear Equation Describing Blow-Up Instability in Self-Oscillatory Systems
A nonclassical fourth-order partial differential equation describing blow-up instability in self-oscillatory systems is studied. Several classes of exact solutions of this equation are constructed. It is shown that these solutions include ones growing to infinity in a finite time, ones bounded globa...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2023-11, Vol.63 (11), p.2081-2089 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2089 |
---|---|
container_issue | 11 |
container_start_page | 2081 |
container_title | Computational mathematics and mathematical physics |
container_volume | 63 |
creator | Aristov, A. I. |
description | A nonclassical fourth-order partial differential equation describing blow-up instability in self-oscillatory systems is studied. Several classes of exact solutions of this equation are constructed. It is shown that these solutions include ones growing to infinity in a finite time, ones bounded globally in time, and ones bounded on any finite time interval, but not globally. |
doi_str_mv | 10.1134/S0965542523110027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2905829377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2905829377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-bb710b40de666cad2edcb026dd3ab696f005c35ddf9f72ed91bedabc7a618db13</originalsourceid><addsrcrecordid>eNp1kE1LwzAYx4MoOKcfwFvAczVJl7Q96pw6GO5Qdy5568jIki1J0X57WyZ4EE_P4fd_efgDcIvRPcb57KFGFaN0RijJMUaIFGdggimlGWOMnIPJiLORX4KrGHcIYVaV-QSIxReXCdbedsl4F6FvIYfv3lnjNA9wcez4COCzjjIYYdwWPln_mW0OcOli4sJYk3poHKy1bbN1lMZannzoYd3HpPfxGly03EZ983OnYPOy-Ji_Zav163L-uMokYWXKhCgwEjOk9PCy5IpoJQUiTKmcC1axFiEqc6pUW7XFACsstOJCFpzhUgmcT8HdKfcQ_LHTMTU73wU3VDakQrQkVV4UgwqfVDL4GINum0Mwex76BqNmnLL5M-XgISdPHLRuq8Nv8v-mbzfcdzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2905829377</pqid></control><display><type>article</type><title>Exact Solutions of a Nonlinear Equation Describing Blow-Up Instability in Self-Oscillatory Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Aristov, A. I.</creator><creatorcontrib>Aristov, A. I.</creatorcontrib><description>A nonclassical fourth-order partial differential equation describing blow-up instability in self-oscillatory systems is studied. Several classes of exact solutions of this equation are constructed. It is shown that these solutions include ones growing to infinity in a finite time, ones bounded globally in time, and ones bounded on any finite time interval, but not globally.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542523110027</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Exact solutions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Oscillating flow ; Partial Differential Equations</subject><ispartof>Computational mathematics and mathematical physics, 2023-11, Vol.63 (11), p.2081-2089</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 11, pp. 2081–2089. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 11, pp. 1850–1858.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-bb710b40de666cad2edcb026dd3ab696f005c35ddf9f72ed91bedabc7a618db13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542523110027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542523110027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Aristov, A. I.</creatorcontrib><title>Exact Solutions of a Nonlinear Equation Describing Blow-Up Instability in Self-Oscillatory Systems</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>A nonclassical fourth-order partial differential equation describing blow-up instability in self-oscillatory systems is studied. Several classes of exact solutions of this equation are constructed. It is shown that these solutions include ones growing to infinity in a finite time, ones bounded globally in time, and ones bounded on any finite time interval, but not globally.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Oscillating flow</subject><subject>Partial Differential Equations</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LwzAYx4MoOKcfwFvAczVJl7Q96pw6GO5Qdy5568jIki1J0X57WyZ4EE_P4fd_efgDcIvRPcb57KFGFaN0RijJMUaIFGdggimlGWOMnIPJiLORX4KrGHcIYVaV-QSIxReXCdbedsl4F6FvIYfv3lnjNA9wcez4COCzjjIYYdwWPln_mW0OcOli4sJYk3poHKy1bbN1lMZannzoYd3HpPfxGly03EZ983OnYPOy-Ji_Zav163L-uMokYWXKhCgwEjOk9PCy5IpoJQUiTKmcC1axFiEqc6pUW7XFACsstOJCFpzhUgmcT8HdKfcQ_LHTMTU73wU3VDakQrQkVV4UgwqfVDL4GINum0Mwex76BqNmnLL5M-XgISdPHLRuq8Nv8v-mbzfcdzo</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Aristov, A. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231101</creationdate><title>Exact Solutions of a Nonlinear Equation Describing Blow-Up Instability in Self-Oscillatory Systems</title><author>Aristov, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-bb710b40de666cad2edcb026dd3ab696f005c35ddf9f72ed91bedabc7a618db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Oscillating flow</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aristov, A. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aristov, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Solutions of a Nonlinear Equation Describing Blow-Up Instability in Self-Oscillatory Systems</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>63</volume><issue>11</issue><spage>2081</spage><epage>2089</epage><pages>2081-2089</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A nonclassical fourth-order partial differential equation describing blow-up instability in self-oscillatory systems is studied. Several classes of exact solutions of this equation are constructed. It is shown that these solutions include ones growing to infinity in a finite time, ones bounded globally in time, and ones bounded on any finite time interval, but not globally.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542523110027</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2023-11, Vol.63 (11), p.2081-2089 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2905829377 |
source | Springer Nature - Complete Springer Journals |
subjects | Computational Mathematics and Numerical Analysis Exact solutions Mathematical analysis Mathematics Mathematics and Statistics Nonlinear equations Oscillating flow Partial Differential Equations |
title | Exact Solutions of a Nonlinear Equation Describing Blow-Up Instability in Self-Oscillatory Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Solutions%20of%20a%20Nonlinear%20Equation%20Describing%20Blow-Up%20Instability%20in%20Self-Oscillatory%20Systems&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Aristov,%20A.%20I.&rft.date=2023-11-01&rft.volume=63&rft.issue=11&rft.spage=2081&rft.epage=2089&rft.pages=2081-2089&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542523110027&rft_dat=%3Cproquest_cross%3E2905829377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2905829377&rft_id=info:pmid/&rfr_iscdi=true |