Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree
The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels o...
Gespeichert in:
Veröffentlicht in: | Russian journal of mathematical physics 2023-12, Vol.30 (4), p.643-673 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 673 |
---|---|
container_issue | 4 |
container_start_page | 643 |
container_title | Russian journal of mathematical physics |
container_volume | 30 |
creator | Pustovoitov, S.E. |
description | The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established.
DOI
10.1134/S1061920823040155 |
doi_str_mv | 10.1134/S1061920823040155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2905829342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2905829342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-758d09472ece5f4a46300c02dfce9f5f67b73dffe1658a13660c3d081a9a4c8b3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rkz6bZo9ZWCwWF6nlJs0mbEndrklU8-s1NqehBvGTCvPd7MwxC5wQuCWH8akFAkIqCpAw4kLI8QIP8loUQTB7mf5aLnX6MTmLcAAiQwAfoc-xVjM46rZLrWtxZvHDtqvcquORM3DXS2uC56_o3573B0867H69q8axNZhXUMksT79025SiPb7LXqdDgd5fWWOHHLpk2uaxkatr1IXdvM2fMKTqyykdz9l2H6Hk6eRrfF_OHu9n4el5oKmQqRqVsoOIjarQpLVdcMAANtLHaVLa0YrQcscZaQ0QpFWFCgGYNSKIqxbVcsiG62OduQ_fam5jqTV6jzSNrWkEpacU4zS6yd-nQxRiMrbfBvajwUROod5eu_1w6M3TPxOxtVyb8Jv8PfQHU0IED</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2905829342</pqid></control><display><type>article</type><title>Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree</title><source>Springer Nature - Complete Springer Journals</source><creator>Pustovoitov, S.E.</creator><creatorcontrib>Pustovoitov, S.E.</creatorcontrib><description>The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established.
DOI
10.1134/S1061920823040155</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920823040155</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Classification ; Hamiltonian functions ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Rigid-body dynamics ; Singularities ; Theoretical</subject><ispartof>Russian journal of mathematical physics, 2023-12, Vol.30 (4), p.643-673</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-758d09472ece5f4a46300c02dfce9f5f67b73dffe1658a13660c3d081a9a4c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920823040155$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920823040155$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Pustovoitov, S.E.</creatorcontrib><title>Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><description>The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established.
DOI
10.1134/S1061920823040155</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Classification</subject><subject>Hamiltonian functions</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rigid-body dynamics</subject><subject>Singularities</subject><subject>Theoretical</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rkz6bZo9ZWCwWF6nlJs0mbEndrklU8-s1NqehBvGTCvPd7MwxC5wQuCWH8akFAkIqCpAw4kLI8QIP8loUQTB7mf5aLnX6MTmLcAAiQwAfoc-xVjM46rZLrWtxZvHDtqvcquORM3DXS2uC56_o3573B0867H69q8axNZhXUMksT79025SiPb7LXqdDgd5fWWOHHLpk2uaxkatr1IXdvM2fMKTqyykdz9l2H6Hk6eRrfF_OHu9n4el5oKmQqRqVsoOIjarQpLVdcMAANtLHaVLa0YrQcscZaQ0QpFWFCgGYNSKIqxbVcsiG62OduQ_fam5jqTV6jzSNrWkEpacU4zS6yd-nQxRiMrbfBvajwUROod5eu_1w6M3TPxOxtVyb8Jv8PfQHU0IED</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Pustovoitov, S.E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree</title><author>Pustovoitov, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-758d09472ece5f4a46300c02dfce9f5f67b73dffe1658a13660c3d081a9a4c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Classification</topic><topic>Hamiltonian functions</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rigid-body dynamics</topic><topic>Singularities</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pustovoitov, S.E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pustovoitov, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>643</spage><epage>673</epage><pages>643-673</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established.
DOI
10.1134/S1061920823040155</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061920823040155</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-9208 |
ispartof | Russian journal of mathematical physics, 2023-12, Vol.30 (4), p.643-673 |
issn | 1061-9208 1555-6638 |
language | eng |
recordid | cdi_proquest_journals_2905829342 |
source | Springer Nature - Complete Springer Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Classification Hamiltonian functions Mathematical and Computational Physics Physics Physics and Astronomy Rigid-body dynamics Singularities Theoretical |
title | Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Singularities%20of%20the%20Liouville%20Foliation%20of%20an%20Integrable%20Elliptical%20Billiard%20with%20a%20Potential%20of%20Fourth%20Degree&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Pustovoitov,%20S.E.&rft.date=2023-12-01&rft.volume=30&rft.issue=4&rft.spage=643&rft.epage=673&rft.pages=643-673&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920823040155&rft_dat=%3Cproquest_cross%3E2905829342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2905829342&rft_id=info:pmid/&rfr_iscdi=true |