Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree

The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2023-12, Vol.30 (4), p.643-673
1. Verfasser: Pustovoitov, S.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 4
container_start_page 643
container_title Russian journal of mathematical physics
container_volume 30
creator Pustovoitov, S.E.
description The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established. DOI 10.1134/S1061920823040155
doi_str_mv 10.1134/S1061920823040155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2905829342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2905829342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-758d09472ece5f4a46300c02dfce9f5f67b73dffe1658a13660c3d081a9a4c8b3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rkz6bZo9ZWCwWF6nlJs0mbEndrklU8-s1NqehBvGTCvPd7MwxC5wQuCWH8akFAkIqCpAw4kLI8QIP8loUQTB7mf5aLnX6MTmLcAAiQwAfoc-xVjM46rZLrWtxZvHDtqvcquORM3DXS2uC56_o3573B0867H69q8axNZhXUMksT79025SiPb7LXqdDgd5fWWOHHLpk2uaxkatr1IXdvM2fMKTqyykdz9l2H6Hk6eRrfF_OHu9n4el5oKmQqRqVsoOIjarQpLVdcMAANtLHaVLa0YrQcscZaQ0QpFWFCgGYNSKIqxbVcsiG62OduQ_fam5jqTV6jzSNrWkEpacU4zS6yd-nQxRiMrbfBvajwUROod5eu_1w6M3TPxOxtVyb8Jv8PfQHU0IED</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2905829342</pqid></control><display><type>article</type><title>Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree</title><source>Springer Nature - Complete Springer Journals</source><creator>Pustovoitov, S.E.</creator><creatorcontrib>Pustovoitov, S.E.</creatorcontrib><description>The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established. DOI 10.1134/S1061920823040155</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920823040155</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Classification ; Hamiltonian functions ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Rigid-body dynamics ; Singularities ; Theoretical</subject><ispartof>Russian journal of mathematical physics, 2023-12, Vol.30 (4), p.643-673</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-758d09472ece5f4a46300c02dfce9f5f67b73dffe1658a13660c3d081a9a4c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920823040155$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920823040155$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Pustovoitov, S.E.</creatorcontrib><title>Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><description>The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established. DOI 10.1134/S1061920823040155</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Classification</subject><subject>Hamiltonian functions</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rigid-body dynamics</subject><subject>Singularities</subject><subject>Theoretical</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rkz6bZo9ZWCwWF6nlJs0mbEndrklU8-s1NqehBvGTCvPd7MwxC5wQuCWH8akFAkIqCpAw4kLI8QIP8loUQTB7mf5aLnX6MTmLcAAiQwAfoc-xVjM46rZLrWtxZvHDtqvcquORM3DXS2uC56_o3573B0867H69q8axNZhXUMksT79025SiPb7LXqdDgd5fWWOHHLpk2uaxkatr1IXdvM2fMKTqyykdz9l2H6Hk6eRrfF_OHu9n4el5oKmQqRqVsoOIjarQpLVdcMAANtLHaVLa0YrQcscZaQ0QpFWFCgGYNSKIqxbVcsiG62OduQ_fam5jqTV6jzSNrWkEpacU4zS6yd-nQxRiMrbfBvajwUROod5eu_1w6M3TPxOxtVyb8Jv8PfQHU0IED</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Pustovoitov, S.E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree</title><author>Pustovoitov, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-758d09472ece5f4a46300c02dfce9f5f67b73dffe1658a13660c3d081a9a4c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Classification</topic><topic>Hamiltonian functions</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rigid-body dynamics</topic><topic>Singularities</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pustovoitov, S.E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pustovoitov, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>643</spage><epage>673</epage><pages>643-673</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established. DOI 10.1134/S1061920823040155</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061920823040155</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9208
ispartof Russian journal of mathematical physics, 2023-12, Vol.30 (4), p.643-673
issn 1061-9208
1555-6638
language eng
recordid cdi_proquest_journals_2905829342
source Springer Nature - Complete Springer Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Classification
Hamiltonian functions
Mathematical and Computational Physics
Physics
Physics and Astronomy
Rigid-body dynamics
Singularities
Theoretical
title Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Singularities%20of%20the%20Liouville%20Foliation%20of%20an%20Integrable%20Elliptical%20Billiard%20with%20a%20Potential%20of%20Fourth%20Degree&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Pustovoitov,%20S.E.&rft.date=2023-12-01&rft.volume=30&rft.issue=4&rft.spage=643&rft.epage=673&rft.pages=643-673&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920823040155&rft_dat=%3Cproquest_cross%3E2905829342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2905829342&rft_id=info:pmid/&rfr_iscdi=true