Harnessing Online Knowledge Transfer for Enhanced Search and Rescue Decisions via Multi-Agent Reinforcement Learning
In the rapidly evolving domain of the Internet of Things (IoT), devices play an instrumental role in high-stakes scenarios like search and rescue (SAR) operations. Traditional decision-making processes within SAR missions often struggle to cope with the dynamic and unpredictable nature of such envir...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-12, Vol.15 (24), p.16741 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 16741 |
container_title | Sustainability |
container_volume | 15 |
creator | Song, Luona Wen, Zhigang Teng, Junjie Zhang, Jian Nicolas, Merveille |
description | In the rapidly evolving domain of the Internet of Things (IoT), devices play an instrumental role in high-stakes scenarios like search and rescue (SAR) operations. Traditional decision-making processes within SAR missions often struggle to cope with the dynamic and unpredictable nature of such environments, leading to inefficiencies and delayed responses. This paper aims to explore the potential of multi-agent reinforcement learning (MARL) to improve the decision-making process within SAR operations underpinned by IoT. Functional, current methods are limited by their static decision frameworks and inability to adapt in real time to the chaotic variables present in SAR situations. We introduced a novel MARL framework and compared its performance against benchmark strategies, specifically the multi-agent deep deterministic policy gradient (MADDPG) approach. Uniquely enhanced by online knowledge transfer, the framework leverages the capabilities of the deep deterministic policy gradient (DDPG) method. The preliminary findings underscore the proposed framework’s superior efficiency and speed in SAR contexts. Our research highlights MARL’s transformative potential, positing it as a groundbreaking strategy for IoT-based decision making in high-pressure SAR environments with suggestions for further studies in varied real-world scenarios. |
doi_str_mv | 10.3390/su152416741 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2904937525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779344175</galeid><sourcerecordid>A779344175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-7c25ec3d73067bb7c70dc86671755dd3e47fe1ab51c5f5765c4cc538daa13e3a3</originalsourceid><addsrcrecordid>eNpVkUtvAiEUhSdNm9RYV_0DJF01zVgYhqGzNPahqY2J2jVBuDPSjIwFpo9_X4xdKCzOhXznnpvcJLkmeEhpie99R1iWk4Ln5CzpZZiTlGCGz4_qy2Tg_QeOh1JSkqKXhIl0Frw3tkZz2xgL6NW23w3oGtDKSesrcKhqHXqyG2kVaLQE6dQGSavRArzqAD2CMt601qMvI9Fb1wSTjmqwIQLGRrOC7f41i04bk66Si0o2Hgb_2k_en59W40k6m79Mx6NZqjJWhpRHAUU1p7jg6zVXHGv1UBSccMa0ppDzCohcM6JYxXjBVK4Uow9aSkKBStpPbg59d6797MAH8dF2zsZIkZU4LylnGYvU8EDVsgGxnzc4qeLVsDWqtVCZ-D_ivKR5HqOj4fbEEJkAP6GWnfdiulycsncHVrnWeweV2Dmzle5XECz2axNHa6N_58eJxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904937525</pqid></control><display><type>article</type><title>Harnessing Online Knowledge Transfer for Enhanced Search and Rescue Decisions via Multi-Agent Reinforcement Learning</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Song, Luona ; Wen, Zhigang ; Teng, Junjie ; Zhang, Jian ; Nicolas, Merveille</creator><creatorcontrib>Song, Luona ; Wen, Zhigang ; Teng, Junjie ; Zhang, Jian ; Nicolas, Merveille</creatorcontrib><description>In the rapidly evolving domain of the Internet of Things (IoT), devices play an instrumental role in high-stakes scenarios like search and rescue (SAR) operations. Traditional decision-making processes within SAR missions often struggle to cope with the dynamic and unpredictable nature of such environments, leading to inefficiencies and delayed responses. This paper aims to explore the potential of multi-agent reinforcement learning (MARL) to improve the decision-making process within SAR operations underpinned by IoT. Functional, current methods are limited by their static decision frameworks and inability to adapt in real time to the chaotic variables present in SAR situations. We introduced a novel MARL framework and compared its performance against benchmark strategies, specifically the multi-agent deep deterministic policy gradient (MADDPG) approach. Uniquely enhanced by online knowledge transfer, the framework leverages the capabilities of the deep deterministic policy gradient (DDPG) method. The preliminary findings underscore the proposed framework’s superior efficiency and speed in SAR contexts. Our research highlights MARL’s transformative potential, positing it as a groundbreaking strategy for IoT-based decision making in high-pressure SAR environments with suggestions for further studies in varied real-world scenarios.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su152416741</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Collaboration ; Communication ; Decision making ; Deep learning ; Evacuations & rescues ; Internet of Things ; Knowledge</subject><ispartof>Sustainability, 2023-12, Vol.15 (24), p.16741</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-7c25ec3d73067bb7c70dc86671755dd3e47fe1ab51c5f5765c4cc538daa13e3a3</cites><orcidid>0000-0002-8824-8574 ; 0000-0002-8026-8394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Song, Luona</creatorcontrib><creatorcontrib>Wen, Zhigang</creatorcontrib><creatorcontrib>Teng, Junjie</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Nicolas, Merveille</creatorcontrib><title>Harnessing Online Knowledge Transfer for Enhanced Search and Rescue Decisions via Multi-Agent Reinforcement Learning</title><title>Sustainability</title><description>In the rapidly evolving domain of the Internet of Things (IoT), devices play an instrumental role in high-stakes scenarios like search and rescue (SAR) operations. Traditional decision-making processes within SAR missions often struggle to cope with the dynamic and unpredictable nature of such environments, leading to inefficiencies and delayed responses. This paper aims to explore the potential of multi-agent reinforcement learning (MARL) to improve the decision-making process within SAR operations underpinned by IoT. Functional, current methods are limited by their static decision frameworks and inability to adapt in real time to the chaotic variables present in SAR situations. We introduced a novel MARL framework and compared its performance against benchmark strategies, specifically the multi-agent deep deterministic policy gradient (MADDPG) approach. Uniquely enhanced by online knowledge transfer, the framework leverages the capabilities of the deep deterministic policy gradient (DDPG) method. The preliminary findings underscore the proposed framework’s superior efficiency and speed in SAR contexts. Our research highlights MARL’s transformative potential, positing it as a groundbreaking strategy for IoT-based decision making in high-pressure SAR environments with suggestions for further studies in varied real-world scenarios.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Communication</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Evacuations & rescues</subject><subject>Internet of Things</subject><subject>Knowledge</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkUtvAiEUhSdNm9RYV_0DJF01zVgYhqGzNPahqY2J2jVBuDPSjIwFpo9_X4xdKCzOhXznnpvcJLkmeEhpie99R1iWk4Ln5CzpZZiTlGCGz4_qy2Tg_QeOh1JSkqKXhIl0Frw3tkZz2xgL6NW23w3oGtDKSesrcKhqHXqyG2kVaLQE6dQGSavRArzqAD2CMt601qMvI9Fb1wSTjmqwIQLGRrOC7f41i04bk66Si0o2Hgb_2k_en59W40k6m79Mx6NZqjJWhpRHAUU1p7jg6zVXHGv1UBSccMa0ppDzCohcM6JYxXjBVK4Uow9aSkKBStpPbg59d6797MAH8dF2zsZIkZU4LylnGYvU8EDVsgGxnzc4qeLVsDWqtVCZ-D_ivKR5HqOj4fbEEJkAP6GWnfdiulycsncHVrnWeweV2Dmzle5XECz2axNHa6N_58eJxg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Song, Luona</creator><creator>Wen, Zhigang</creator><creator>Teng, Junjie</creator><creator>Zhang, Jian</creator><creator>Nicolas, Merveille</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8824-8574</orcidid><orcidid>https://orcid.org/0000-0002-8026-8394</orcidid></search><sort><creationdate>20231201</creationdate><title>Harnessing Online Knowledge Transfer for Enhanced Search and Rescue Decisions via Multi-Agent Reinforcement Learning</title><author>Song, Luona ; Wen, Zhigang ; Teng, Junjie ; Zhang, Jian ; Nicolas, Merveille</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-7c25ec3d73067bb7c70dc86671755dd3e47fe1ab51c5f5765c4cc538daa13e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Communication</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Evacuations & rescues</topic><topic>Internet of Things</topic><topic>Knowledge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Luona</creatorcontrib><creatorcontrib>Wen, Zhigang</creatorcontrib><creatorcontrib>Teng, Junjie</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Nicolas, Merveille</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Luona</au><au>Wen, Zhigang</au><au>Teng, Junjie</au><au>Zhang, Jian</au><au>Nicolas, Merveille</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing Online Knowledge Transfer for Enhanced Search and Rescue Decisions via Multi-Agent Reinforcement Learning</atitle><jtitle>Sustainability</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>24</issue><spage>16741</spage><pages>16741-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In the rapidly evolving domain of the Internet of Things (IoT), devices play an instrumental role in high-stakes scenarios like search and rescue (SAR) operations. Traditional decision-making processes within SAR missions often struggle to cope with the dynamic and unpredictable nature of such environments, leading to inefficiencies and delayed responses. This paper aims to explore the potential of multi-agent reinforcement learning (MARL) to improve the decision-making process within SAR operations underpinned by IoT. Functional, current methods are limited by their static decision frameworks and inability to adapt in real time to the chaotic variables present in SAR situations. We introduced a novel MARL framework and compared its performance against benchmark strategies, specifically the multi-agent deep deterministic policy gradient (MADDPG) approach. Uniquely enhanced by online knowledge transfer, the framework leverages the capabilities of the deep deterministic policy gradient (DDPG) method. The preliminary findings underscore the proposed framework’s superior efficiency and speed in SAR contexts. Our research highlights MARL’s transformative potential, positing it as a groundbreaking strategy for IoT-based decision making in high-pressure SAR environments with suggestions for further studies in varied real-world scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su152416741</doi><orcidid>https://orcid.org/0000-0002-8824-8574</orcidid><orcidid>https://orcid.org/0000-0002-8026-8394</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-12, Vol.15 (24), p.16741 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2904937525 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Collaboration Communication Decision making Deep learning Evacuations & rescues Internet of Things Knowledge |
title | Harnessing Online Knowledge Transfer for Enhanced Search and Rescue Decisions via Multi-Agent Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20Online%20Knowledge%20Transfer%20for%20Enhanced%20Search%20and%20Rescue%20Decisions%20via%20Multi-Agent%20Reinforcement%20Learning&rft.jtitle=Sustainability&rft.au=Song,%20Luona&rft.date=2023-12-01&rft.volume=15&rft.issue=24&rft.spage=16741&rft.pages=16741-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su152416741&rft_dat=%3Cgale_proqu%3EA779344175%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904937525&rft_id=info:pmid/&rft_galeid=A779344175&rfr_iscdi=true |