Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles
Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, parti...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-12, Vol.12 (24), p.4931 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 4931 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Oh, In-Taek Lee, Ji-Su Han, Jin-Se Lee, Seong-Woo Kim, Su-Jong Rhi, Seok-Ho |
description | Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, particularly in Battery Electric Vehicles (BEVs). This study introduces a pioneering BTMS solution merging a two-phase immersion cooling system with heat pipes. Notably, the integration of NovecTM 649 as the dielectric fluid substantially mitigates thermal runaway-induced fire risks without requiring an additional power source. Comprehensive 1-D modeling, validated against AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) simulations and experiments, investigates diverse design variable impacts on thermal resistance and evaporator temperature. At 10 W, 15 W, and 20 W heat inputs, the BTMS consistently maintained lithium-ion battery temperatures within the optimal range (approximately 27–34 °C). Optimized porosity (60%) and filling ratios (30–40%) minimized thermal resistance to 0.3848–0.4549 °C/W. This innovative system not only enhances safety but also improves energy efficiency by reducing weight, affirming its potential to revolutionize lithium-ion battery performance and address critical challenges in the field. |
doi_str_mv | 10.3390/electronics12244931 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904838203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904838203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-8cccc2069e17670436673b51397ae4a68d8fb5fd893fc6da5836bd18f9f7926f3</originalsourceid><addsrcrecordid>eNptkE1PAjEYhBujiQT5BV6aeF5t-y79OCpBwZDoAb1uSvctlCxbbJcD_95FPHhwLjOHJzPJEHLL2T2AYQ_YoOtSbIPLXIiyNMAvyEAwZQojjLj8k6_JKOct62U4aGAD8roIxTy29Ml2HaYjne92mDLWdIa2o-9hj3QSYxPaNV2i27Sxiesj9THR6c9scPQTN8E1mG_IlbdNxtGvD8nH83Q5mRWLt5f55HFROKFEV2jXSzBpkCupWAlSKliNORhlsbRS19qvxr7WBryTtR1rkKuaa2-8MkJ6GJK7c-8-xa8D5q7axkNq-8lKGFZq0IJBT8GZcinmnNBX-xR2Nh0rzqrTb9U_v8E3nnBi1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904838203</pqid></control><display><type>article</type><title>Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Oh, In-Taek ; Lee, Ji-Su ; Han, Jin-Se ; Lee, Seong-Woo ; Kim, Su-Jong ; Rhi, Seok-Ho</creator><creatorcontrib>Oh, In-Taek ; Lee, Ji-Su ; Han, Jin-Se ; Lee, Seong-Woo ; Kim, Su-Jong ; Rhi, Seok-Ho</creatorcontrib><description>Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, particularly in Battery Electric Vehicles (BEVs). This study introduces a pioneering BTMS solution merging a two-phase immersion cooling system with heat pipes. Notably, the integration of NovecTM 649 as the dielectric fluid substantially mitigates thermal runaway-induced fire risks without requiring an additional power source. Comprehensive 1-D modeling, validated against AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) simulations and experiments, investigates diverse design variable impacts on thermal resistance and evaporator temperature. At 10 W, 15 W, and 20 W heat inputs, the BTMS consistently maintained lithium-ion battery temperatures within the optimal range (approximately 27–34 °C). Optimized porosity (60%) and filling ratios (30–40%) minimized thermal resistance to 0.3848–0.4549 °C/W. This innovative system not only enhances safety but also improves energy efficiency by reducing weight, affirming its potential to revolutionize lithium-ion battery performance and address critical challenges in the field.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12244931</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Batteries ; Composite materials ; Cooling ; Cooling systems ; Cost analysis ; Electric vehicles ; Energy efficiency ; Energy storage ; Environment models ; Evaporators ; Heat conductivity ; Heat pipes ; Heat transfer ; Immersion cooling ; Lithium ; Lithium-ion batteries ; Porous materials ; Power sources ; Power supply ; Rechargeable batteries ; Temperature ; Thermal management ; Thermal resistance ; Thermal runaway ; Weight reduction</subject><ispartof>Electronics (Basel), 2023-12, Vol.12 (24), p.4931</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-8cccc2069e17670436673b51397ae4a68d8fb5fd893fc6da5836bd18f9f7926f3</cites><orcidid>0000-0001-5183-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Oh, In-Taek</creatorcontrib><creatorcontrib>Lee, Ji-Su</creatorcontrib><creatorcontrib>Han, Jin-Se</creatorcontrib><creatorcontrib>Lee, Seong-Woo</creatorcontrib><creatorcontrib>Kim, Su-Jong</creatorcontrib><creatorcontrib>Rhi, Seok-Ho</creatorcontrib><title>Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles</title><title>Electronics (Basel)</title><description>Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, particularly in Battery Electric Vehicles (BEVs). This study introduces a pioneering BTMS solution merging a two-phase immersion cooling system with heat pipes. Notably, the integration of NovecTM 649 as the dielectric fluid substantially mitigates thermal runaway-induced fire risks without requiring an additional power source. Comprehensive 1-D modeling, validated against AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) simulations and experiments, investigates diverse design variable impacts on thermal resistance and evaporator temperature. At 10 W, 15 W, and 20 W heat inputs, the BTMS consistently maintained lithium-ion battery temperatures within the optimal range (approximately 27–34 °C). Optimized porosity (60%) and filling ratios (30–40%) minimized thermal resistance to 0.3848–0.4549 °C/W. This innovative system not only enhances safety but also improves energy efficiency by reducing weight, affirming its potential to revolutionize lithium-ion battery performance and address critical challenges in the field.</description><subject>Batteries</subject><subject>Composite materials</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Cost analysis</subject><subject>Electric vehicles</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Environment models</subject><subject>Evaporators</subject><subject>Heat conductivity</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Immersion cooling</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Porous materials</subject><subject>Power sources</subject><subject>Power supply</subject><subject>Rechargeable batteries</subject><subject>Temperature</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Thermal runaway</subject><subject>Weight reduction</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1PAjEYhBujiQT5BV6aeF5t-y79OCpBwZDoAb1uSvctlCxbbJcD_95FPHhwLjOHJzPJEHLL2T2AYQ_YoOtSbIPLXIiyNMAvyEAwZQojjLj8k6_JKOct62U4aGAD8roIxTy29Ml2HaYjne92mDLWdIa2o-9hj3QSYxPaNV2i27Sxiesj9THR6c9scPQTN8E1mG_IlbdNxtGvD8nH83Q5mRWLt5f55HFROKFEV2jXSzBpkCupWAlSKliNORhlsbRS19qvxr7WBryTtR1rkKuaa2-8MkJ6GJK7c-8-xa8D5q7axkNq-8lKGFZq0IJBT8GZcinmnNBX-xR2Nh0rzqrTb9U_v8E3nnBi1A</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Oh, In-Taek</creator><creator>Lee, Ji-Su</creator><creator>Han, Jin-Se</creator><creator>Lee, Seong-Woo</creator><creator>Kim, Su-Jong</creator><creator>Rhi, Seok-Ho</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5183-189X</orcidid></search><sort><creationdate>20231201</creationdate><title>Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles</title><author>Oh, In-Taek ; Lee, Ji-Su ; Han, Jin-Se ; Lee, Seong-Woo ; Kim, Su-Jong ; Rhi, Seok-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-8cccc2069e17670436673b51397ae4a68d8fb5fd893fc6da5836bd18f9f7926f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Composite materials</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Cost analysis</topic><topic>Electric vehicles</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Environment models</topic><topic>Evaporators</topic><topic>Heat conductivity</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Immersion cooling</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Porous materials</topic><topic>Power sources</topic><topic>Power supply</topic><topic>Rechargeable batteries</topic><topic>Temperature</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Thermal runaway</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, In-Taek</creatorcontrib><creatorcontrib>Lee, Ji-Su</creatorcontrib><creatorcontrib>Han, Jin-Se</creatorcontrib><creatorcontrib>Lee, Seong-Woo</creatorcontrib><creatorcontrib>Kim, Su-Jong</creatorcontrib><creatorcontrib>Rhi, Seok-Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, In-Taek</au><au>Lee, Ji-Su</au><au>Han, Jin-Se</au><au>Lee, Seong-Woo</au><au>Kim, Su-Jong</au><au>Rhi, Seok-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>12</volume><issue>24</issue><spage>4931</spage><pages>4931-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, particularly in Battery Electric Vehicles (BEVs). This study introduces a pioneering BTMS solution merging a two-phase immersion cooling system with heat pipes. Notably, the integration of NovecTM 649 as the dielectric fluid substantially mitigates thermal runaway-induced fire risks without requiring an additional power source. Comprehensive 1-D modeling, validated against AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) simulations and experiments, investigates diverse design variable impacts on thermal resistance and evaporator temperature. At 10 W, 15 W, and 20 W heat inputs, the BTMS consistently maintained lithium-ion battery temperatures within the optimal range (approximately 27–34 °C). Optimized porosity (60%) and filling ratios (30–40%) minimized thermal resistance to 0.3848–0.4549 °C/W. This innovative system not only enhances safety but also improves energy efficiency by reducing weight, affirming its potential to revolutionize lithium-ion battery performance and address critical challenges in the field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12244931</doi><orcidid>https://orcid.org/0000-0001-5183-189X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-12, Vol.12 (24), p.4931 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2904838203 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Batteries Composite materials Cooling Cooling systems Cost analysis Electric vehicles Energy efficiency Energy storage Environment models Evaporators Heat conductivity Heat pipes Heat transfer Immersion cooling Lithium Lithium-ion batteries Porous materials Power sources Power supply Rechargeable batteries Temperature Thermal management Thermal resistance Thermal runaway Weight reduction |
title | Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-Ion%20Battery%20Immersed%20Heat%20Pipe%20Cooling%20Technology%20for%20Electric%20Vehicles&rft.jtitle=Electronics%20(Basel)&rft.au=Oh,%20In-Taek&rft.date=2023-12-01&rft.volume=12&rft.issue=24&rft.spage=4931&rft.pages=4931-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12244931&rft_dat=%3Cproquest_cross%3E2904838203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904838203&rft_id=info:pmid/&rfr_iscdi=true |