Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles

Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-12, Vol.12 (24), p.4931
Hauptverfasser: Oh, In-Taek, Lee, Ji-Su, Han, Jin-Se, Lee, Seong-Woo, Kim, Su-Jong, Rhi, Seok-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 4931
container_title Electronics (Basel)
container_volume 12
creator Oh, In-Taek
Lee, Ji-Su
Han, Jin-Se
Lee, Seong-Woo
Kim, Su-Jong
Rhi, Seok-Ho
description Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, particularly in Battery Electric Vehicles (BEVs). This study introduces a pioneering BTMS solution merging a two-phase immersion cooling system with heat pipes. Notably, the integration of NovecTM 649 as the dielectric fluid substantially mitigates thermal runaway-induced fire risks without requiring an additional power source. Comprehensive 1-D modeling, validated against AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) simulations and experiments, investigates diverse design variable impacts on thermal resistance and evaporator temperature. At 10 W, 15 W, and 20 W heat inputs, the BTMS consistently maintained lithium-ion battery temperatures within the optimal range (approximately 27–34 °C). Optimized porosity (60%) and filling ratios (30–40%) minimized thermal resistance to 0.3848–0.4549 °C/W. This innovative system not only enhances safety but also improves energy efficiency by reducing weight, affirming its potential to revolutionize lithium-ion battery performance and address critical challenges in the field.
doi_str_mv 10.3390/electronics12244931
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904838203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904838203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-8cccc2069e17670436673b51397ae4a68d8fb5fd893fc6da5836bd18f9f7926f3</originalsourceid><addsrcrecordid>eNptkE1PAjEYhBujiQT5BV6aeF5t-y79OCpBwZDoAb1uSvctlCxbbJcD_95FPHhwLjOHJzPJEHLL2T2AYQ_YoOtSbIPLXIiyNMAvyEAwZQojjLj8k6_JKOct62U4aGAD8roIxTy29Ml2HaYjne92mDLWdIa2o-9hj3QSYxPaNV2i27Sxiesj9THR6c9scPQTN8E1mG_IlbdNxtGvD8nH83Q5mRWLt5f55HFROKFEV2jXSzBpkCupWAlSKliNORhlsbRS19qvxr7WBryTtR1rkKuaa2-8MkJ6GJK7c-8-xa8D5q7axkNq-8lKGFZq0IJBT8GZcinmnNBX-xR2Nh0rzqrTb9U_v8E3nnBi1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904838203</pqid></control><display><type>article</type><title>Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Oh, In-Taek ; Lee, Ji-Su ; Han, Jin-Se ; Lee, Seong-Woo ; Kim, Su-Jong ; Rhi, Seok-Ho</creator><creatorcontrib>Oh, In-Taek ; Lee, Ji-Su ; Han, Jin-Se ; Lee, Seong-Woo ; Kim, Su-Jong ; Rhi, Seok-Ho</creatorcontrib><description>Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, particularly in Battery Electric Vehicles (BEVs). This study introduces a pioneering BTMS solution merging a two-phase immersion cooling system with heat pipes. Notably, the integration of NovecTM 649 as the dielectric fluid substantially mitigates thermal runaway-induced fire risks without requiring an additional power source. Comprehensive 1-D modeling, validated against AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) simulations and experiments, investigates diverse design variable impacts on thermal resistance and evaporator temperature. At 10 W, 15 W, and 20 W heat inputs, the BTMS consistently maintained lithium-ion battery temperatures within the optimal range (approximately 27–34 °C). Optimized porosity (60%) and filling ratios (30–40%) minimized thermal resistance to 0.3848–0.4549 °C/W. This innovative system not only enhances safety but also improves energy efficiency by reducing weight, affirming its potential to revolutionize lithium-ion battery performance and address critical challenges in the field.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12244931</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Batteries ; Composite materials ; Cooling ; Cooling systems ; Cost analysis ; Electric vehicles ; Energy efficiency ; Energy storage ; Environment models ; Evaporators ; Heat conductivity ; Heat pipes ; Heat transfer ; Immersion cooling ; Lithium ; Lithium-ion batteries ; Porous materials ; Power sources ; Power supply ; Rechargeable batteries ; Temperature ; Thermal management ; Thermal resistance ; Thermal runaway ; Weight reduction</subject><ispartof>Electronics (Basel), 2023-12, Vol.12 (24), p.4931</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-8cccc2069e17670436673b51397ae4a68d8fb5fd893fc6da5836bd18f9f7926f3</cites><orcidid>0000-0001-5183-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Oh, In-Taek</creatorcontrib><creatorcontrib>Lee, Ji-Su</creatorcontrib><creatorcontrib>Han, Jin-Se</creatorcontrib><creatorcontrib>Lee, Seong-Woo</creatorcontrib><creatorcontrib>Kim, Su-Jong</creatorcontrib><creatorcontrib>Rhi, Seok-Ho</creatorcontrib><title>Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles</title><title>Electronics (Basel)</title><description>Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, particularly in Battery Electric Vehicles (BEVs). This study introduces a pioneering BTMS solution merging a two-phase immersion cooling system with heat pipes. Notably, the integration of NovecTM 649 as the dielectric fluid substantially mitigates thermal runaway-induced fire risks without requiring an additional power source. Comprehensive 1-D modeling, validated against AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) simulations and experiments, investigates diverse design variable impacts on thermal resistance and evaporator temperature. At 10 W, 15 W, and 20 W heat inputs, the BTMS consistently maintained lithium-ion battery temperatures within the optimal range (approximately 27–34 °C). Optimized porosity (60%) and filling ratios (30–40%) minimized thermal resistance to 0.3848–0.4549 °C/W. This innovative system not only enhances safety but also improves energy efficiency by reducing weight, affirming its potential to revolutionize lithium-ion battery performance and address critical challenges in the field.</description><subject>Batteries</subject><subject>Composite materials</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Cost analysis</subject><subject>Electric vehicles</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Environment models</subject><subject>Evaporators</subject><subject>Heat conductivity</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Immersion cooling</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Porous materials</subject><subject>Power sources</subject><subject>Power supply</subject><subject>Rechargeable batteries</subject><subject>Temperature</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Thermal runaway</subject><subject>Weight reduction</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1PAjEYhBujiQT5BV6aeF5t-y79OCpBwZDoAb1uSvctlCxbbJcD_95FPHhwLjOHJzPJEHLL2T2AYQ_YoOtSbIPLXIiyNMAvyEAwZQojjLj8k6_JKOct62U4aGAD8roIxTy29Ml2HaYjne92mDLWdIa2o-9hj3QSYxPaNV2i27Sxiesj9THR6c9scPQTN8E1mG_IlbdNxtGvD8nH83Q5mRWLt5f55HFROKFEV2jXSzBpkCupWAlSKliNORhlsbRS19qvxr7WBryTtR1rkKuaa2-8MkJ6GJK7c-8-xa8D5q7axkNq-8lKGFZq0IJBT8GZcinmnNBX-xR2Nh0rzqrTb9U_v8E3nnBi1A</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Oh, In-Taek</creator><creator>Lee, Ji-Su</creator><creator>Han, Jin-Se</creator><creator>Lee, Seong-Woo</creator><creator>Kim, Su-Jong</creator><creator>Rhi, Seok-Ho</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5183-189X</orcidid></search><sort><creationdate>20231201</creationdate><title>Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles</title><author>Oh, In-Taek ; Lee, Ji-Su ; Han, Jin-Se ; Lee, Seong-Woo ; Kim, Su-Jong ; Rhi, Seok-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-8cccc2069e17670436673b51397ae4a68d8fb5fd893fc6da5836bd18f9f7926f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Composite materials</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Cost analysis</topic><topic>Electric vehicles</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Environment models</topic><topic>Evaporators</topic><topic>Heat conductivity</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Immersion cooling</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Porous materials</topic><topic>Power sources</topic><topic>Power supply</topic><topic>Rechargeable batteries</topic><topic>Temperature</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Thermal runaway</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, In-Taek</creatorcontrib><creatorcontrib>Lee, Ji-Su</creatorcontrib><creatorcontrib>Han, Jin-Se</creatorcontrib><creatorcontrib>Lee, Seong-Woo</creatorcontrib><creatorcontrib>Kim, Su-Jong</creatorcontrib><creatorcontrib>Rhi, Seok-Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, In-Taek</au><au>Lee, Ji-Su</au><au>Han, Jin-Se</au><au>Lee, Seong-Woo</au><au>Kim, Su-Jong</au><au>Rhi, Seok-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>12</volume><issue>24</issue><spage>4931</spage><pages>4931-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Lithium-ion batteries, crucial in powering Battery Electric Vehicles (BEVs), face critical challenges in maintaining safety and efficiency. The quest for an effective Battery Thermal Management System (BTMS) arises from critical concerns over the safety and efficiency of lithium-ion batteries, particularly in Battery Electric Vehicles (BEVs). This study introduces a pioneering BTMS solution merging a two-phase immersion cooling system with heat pipes. Notably, the integration of NovecTM 649 as the dielectric fluid substantially mitigates thermal runaway-induced fire risks without requiring an additional power source. Comprehensive 1-D modeling, validated against AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) simulations and experiments, investigates diverse design variable impacts on thermal resistance and evaporator temperature. At 10 W, 15 W, and 20 W heat inputs, the BTMS consistently maintained lithium-ion battery temperatures within the optimal range (approximately 27–34 °C). Optimized porosity (60%) and filling ratios (30–40%) minimized thermal resistance to 0.3848–0.4549 °C/W. This innovative system not only enhances safety but also improves energy efficiency by reducing weight, affirming its potential to revolutionize lithium-ion battery performance and address critical challenges in the field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12244931</doi><orcidid>https://orcid.org/0000-0001-5183-189X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-12, Vol.12 (24), p.4931
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2904838203
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Batteries
Composite materials
Cooling
Cooling systems
Cost analysis
Electric vehicles
Energy efficiency
Energy storage
Environment models
Evaporators
Heat conductivity
Heat pipes
Heat transfer
Immersion cooling
Lithium
Lithium-ion batteries
Porous materials
Power sources
Power supply
Rechargeable batteries
Temperature
Thermal management
Thermal resistance
Thermal runaway
Weight reduction
title Li-Ion Battery Immersed Heat Pipe Cooling Technology for Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-Ion%20Battery%20Immersed%20Heat%20Pipe%20Cooling%20Technology%20for%20Electric%20Vehicles&rft.jtitle=Electronics%20(Basel)&rft.au=Oh,%20In-Taek&rft.date=2023-12-01&rft.volume=12&rft.issue=24&rft.spage=4931&rft.pages=4931-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12244931&rft_dat=%3Cproquest_cross%3E2904838203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904838203&rft_id=info:pmid/&rfr_iscdi=true