Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets
Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@C...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-12, Vol.33 (52), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Liu, Xi Sun, Zhefei Sun, Yingjuan Lin, Haoxiang Chen, Zhisong Chen, Xiaoxuan Niu, Li Zhang, Qiaobao Li, Hongyan |
description | Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is first proposed to alleviate volume variations and accelerate stable charge transport to boost K+ storage performance. The introduction of proper Bi2O3 not only provides an efficient K+ adsorption path, but also effectively buffers volume changes via conversion reaction. Accordingly, the as‐prepared anode exhibits a remarkable rate capability (149.3 mAh g−1 at 60 A g−1, 42% capacity retention with a 120‐fold current‐density increase) and extraordinary durability (1800 cycles at 5.0 A g−1, 95% capacity retention), among the best rate and cycling performance to date in potassium ion batteries (PIBs) anodes. Theoretical calculations reveal the feasible structures of Bi/Bi2O3 NDs@CSs with double protection of carbon sheets and Bi2O3 are conducive to enhance charge transfer and efficiency of electrochemical reaction. Substantial in situ/ex situ characterizations and finite element simulation further unveil high reversibility and robust mechanical behavior of Bi/Bi2O3 NDs@CSs, favorable for the reinforcement of structural stability. This study provides new insights into developing high‐performance and durable Bi‐based anodes for PIBs.
The optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is elaborately prepared. Such a special structural design is favorable for superior potassium storage, delivering high rate capacity of 149.4 mAh g−1 at 60 A g−1, and robust cycling performance of 201.8 mAh g−1 is maintained over 1000 cycles at 10 A g−1. |
doi_str_mv | 10.1002/adfm.202307205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2904815991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904815991</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-c214b225a1f9049f0709fba744728665f9f02fa587de943c8a3646f762b46f653</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKVsyXOaf1InOTYlhYqBYpakLhFm8YprhK7xKkgNz4BfpEvwQHU0-yOZma1g9AlJQNKCBtCXlQDRhgnISPBEepRQYXHCYuODzN9PkVn1m4JoWHI_R76moFtMOgcJ0Zvvj8-E7crvcEPpgFr1b5y3NxovGpMDRuJpxqyUuY4a_ESGmU0lGXr2I3SUtadc9XUoLSzLWUJ778aPFbDsWILju9Bm9w0Fk-rTOa5C1IaT6DOuhMvUjb2HJ0UUFp58Y999DSbPk5uvWRxM5-MEm_HOA-8NaN-xlgAtIiJHxckJHGRQej7IYuECApHsQKCKMxl7PN1BFz4oggFyxyIgPfR1V_urjave2mbdGv2tXvHpswlRjSIY-pU8Z_qTZWyTXe1qqBuU0rSrvO06zw9dJ6Ormd3h43_AG4Ves0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904815991</pqid></control><display><type>article</type><title>Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Liu, Xi ; Sun, Zhefei ; Sun, Yingjuan ; Lin, Haoxiang ; Chen, Zhisong ; Chen, Xiaoxuan ; Niu, Li ; Zhang, Qiaobao ; Li, Hongyan</creator><creatorcontrib>Liu, Xi ; Sun, Zhefei ; Sun, Yingjuan ; Lin, Haoxiang ; Chen, Zhisong ; Chen, Xiaoxuan ; Niu, Li ; Zhang, Qiaobao ; Li, Hongyan</creatorcontrib><description>Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is first proposed to alleviate volume variations and accelerate stable charge transport to boost K+ storage performance. The introduction of proper Bi2O3 not only provides an efficient K+ adsorption path, but also effectively buffers volume changes via conversion reaction. Accordingly, the as‐prepared anode exhibits a remarkable rate capability (149.3 mAh g−1 at 60 A g−1, 42% capacity retention with a 120‐fold current‐density increase) and extraordinary durability (1800 cycles at 5.0 A g−1, 95% capacity retention), among the best rate and cycling performance to date in potassium ion batteries (PIBs) anodes. Theoretical calculations reveal the feasible structures of Bi/Bi2O3 NDs@CSs with double protection of carbon sheets and Bi2O3 are conducive to enhance charge transfer and efficiency of electrochemical reaction. Substantial in situ/ex situ characterizations and finite element simulation further unveil high reversibility and robust mechanical behavior of Bi/Bi2O3 NDs@CSs, favorable for the reinforcement of structural stability. This study provides new insights into developing high‐performance and durable Bi‐based anodes for PIBs.
The optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is elaborately prepared. Such a special structural design is favorable for superior potassium storage, delivering high rate capacity of 149.4 mAh g−1 at 60 A g−1, and robust cycling performance of 201.8 mAh g−1 is maintained over 1000 cycles at 10 A g−1.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202307205</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Bi/Bi2O3 nanodots ; Bismuth trioxide ; Carbon ; Charge efficiency ; Charge transfer ; Charge transport ; Durability ; Finite element method ; in situ characterizations ; Ion storage ; Materials science ; Mathematical analysis ; Mechanical properties ; Potassium ; potassium‐ion storage performance ; Reaction kinetics ; Structural stability ; theoretical simulations</subject><ispartof>Advanced functional materials, 2023-12, Vol.33 (52), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7073-5198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202307205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202307205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Sun, Zhefei</creatorcontrib><creatorcontrib>Sun, Yingjuan</creatorcontrib><creatorcontrib>Lin, Haoxiang</creatorcontrib><creatorcontrib>Chen, Zhisong</creatorcontrib><creatorcontrib>Chen, Xiaoxuan</creatorcontrib><creatorcontrib>Niu, Li</creatorcontrib><creatorcontrib>Zhang, Qiaobao</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><title>Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets</title><title>Advanced functional materials</title><description>Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is first proposed to alleviate volume variations and accelerate stable charge transport to boost K+ storage performance. The introduction of proper Bi2O3 not only provides an efficient K+ adsorption path, but also effectively buffers volume changes via conversion reaction. Accordingly, the as‐prepared anode exhibits a remarkable rate capability (149.3 mAh g−1 at 60 A g−1, 42% capacity retention with a 120‐fold current‐density increase) and extraordinary durability (1800 cycles at 5.0 A g−1, 95% capacity retention), among the best rate and cycling performance to date in potassium ion batteries (PIBs) anodes. Theoretical calculations reveal the feasible structures of Bi/Bi2O3 NDs@CSs with double protection of carbon sheets and Bi2O3 are conducive to enhance charge transfer and efficiency of electrochemical reaction. Substantial in situ/ex situ characterizations and finite element simulation further unveil high reversibility and robust mechanical behavior of Bi/Bi2O3 NDs@CSs, favorable for the reinforcement of structural stability. This study provides new insights into developing high‐performance and durable Bi‐based anodes for PIBs.
The optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is elaborately prepared. Such a special structural design is favorable for superior potassium storage, delivering high rate capacity of 149.4 mAh g−1 at 60 A g−1, and robust cycling performance of 201.8 mAh g−1 is maintained over 1000 cycles at 10 A g−1.</description><subject>Anodes</subject><subject>Bi/Bi2O3 nanodots</subject><subject>Bismuth trioxide</subject><subject>Carbon</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Durability</subject><subject>Finite element method</subject><subject>in situ characterizations</subject><subject>Ion storage</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Potassium</subject><subject>potassium‐ion storage performance</subject><subject>Reaction kinetics</subject><subject>Structural stability</subject><subject>theoretical simulations</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKVsyXOaf1InOTYlhYqBYpakLhFm8YprhK7xKkgNz4BfpEvwQHU0-yOZma1g9AlJQNKCBtCXlQDRhgnISPBEepRQYXHCYuODzN9PkVn1m4JoWHI_R76moFtMOgcJ0Zvvj8-E7crvcEPpgFr1b5y3NxovGpMDRuJpxqyUuY4a_ESGmU0lGXr2I3SUtadc9XUoLSzLWUJ778aPFbDsWILju9Bm9w0Fk-rTOa5C1IaT6DOuhMvUjb2HJ0UUFp58Y999DSbPk5uvWRxM5-MEm_HOA-8NaN-xlgAtIiJHxckJHGRQej7IYuECApHsQKCKMxl7PN1BFz4oggFyxyIgPfR1V_urjave2mbdGv2tXvHpswlRjSIY-pU8Z_qTZWyTXe1qqBuU0rSrvO06zw9dJ6Ormd3h43_AG4Ves0</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Liu, Xi</creator><creator>Sun, Zhefei</creator><creator>Sun, Yingjuan</creator><creator>Lin, Haoxiang</creator><creator>Chen, Zhisong</creator><creator>Chen, Xiaoxuan</creator><creator>Niu, Li</creator><creator>Zhang, Qiaobao</creator><creator>Li, Hongyan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7073-5198</orcidid></search><sort><creationdate>20231222</creationdate><title>Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets</title><author>Liu, Xi ; Sun, Zhefei ; Sun, Yingjuan ; Lin, Haoxiang ; Chen, Zhisong ; Chen, Xiaoxuan ; Niu, Li ; Zhang, Qiaobao ; Li, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-c214b225a1f9049f0709fba744728665f9f02fa587de943c8a3646f762b46f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Bi/Bi2O3 nanodots</topic><topic>Bismuth trioxide</topic><topic>Carbon</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Durability</topic><topic>Finite element method</topic><topic>in situ characterizations</topic><topic>Ion storage</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Potassium</topic><topic>potassium‐ion storage performance</topic><topic>Reaction kinetics</topic><topic>Structural stability</topic><topic>theoretical simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Sun, Zhefei</creatorcontrib><creatorcontrib>Sun, Yingjuan</creatorcontrib><creatorcontrib>Lin, Haoxiang</creatorcontrib><creatorcontrib>Chen, Zhisong</creatorcontrib><creatorcontrib>Chen, Xiaoxuan</creatorcontrib><creatorcontrib>Niu, Li</creatorcontrib><creatorcontrib>Zhang, Qiaobao</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xi</au><au>Sun, Zhefei</au><au>Sun, Yingjuan</au><au>Lin, Haoxiang</au><au>Chen, Zhisong</au><au>Chen, Xiaoxuan</au><au>Niu, Li</au><au>Zhang, Qiaobao</au><au>Li, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets</atitle><jtitle>Advanced functional materials</jtitle><date>2023-12-22</date><risdate>2023</risdate><volume>33</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is first proposed to alleviate volume variations and accelerate stable charge transport to boost K+ storage performance. The introduction of proper Bi2O3 not only provides an efficient K+ adsorption path, but also effectively buffers volume changes via conversion reaction. Accordingly, the as‐prepared anode exhibits a remarkable rate capability (149.3 mAh g−1 at 60 A g−1, 42% capacity retention with a 120‐fold current‐density increase) and extraordinary durability (1800 cycles at 5.0 A g−1, 95% capacity retention), among the best rate and cycling performance to date in potassium ion batteries (PIBs) anodes. Theoretical calculations reveal the feasible structures of Bi/Bi2O3 NDs@CSs with double protection of carbon sheets and Bi2O3 are conducive to enhance charge transfer and efficiency of electrochemical reaction. Substantial in situ/ex situ characterizations and finite element simulation further unveil high reversibility and robust mechanical behavior of Bi/Bi2O3 NDs@CSs, favorable for the reinforcement of structural stability. This study provides new insights into developing high‐performance and durable Bi‐based anodes for PIBs.
The optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is elaborately prepared. Such a special structural design is favorable for superior potassium storage, delivering high rate capacity of 149.4 mAh g−1 at 60 A g−1, and robust cycling performance of 201.8 mAh g−1 is maintained over 1000 cycles at 10 A g−1.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202307205</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7073-5198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-12, Vol.33 (52), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2904815991 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Anodes Bi/Bi2O3 nanodots Bismuth trioxide Carbon Charge efficiency Charge transfer Charge transport Durability Finite element method in situ characterizations Ion storage Materials science Mathematical analysis Mechanical properties Potassium potassium‐ion storage performance Reaction kinetics Structural stability theoretical simulations |
title | Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Long%E2%80%90Lasting%20Potassium%E2%80%90Ion%20Storage%20Enabled%20by%20Rationally%20Engineering%20Strain%E2%80%90Relaxation%20Bi/Bi2O3%20Nanodots%20Embedded%20in%20Carbon%20Sheets&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Xi&rft.date=2023-12-22&rft.volume=33&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202307205&rft_dat=%3Cproquest_wiley%3E2904815991%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904815991&rft_id=info:pmid/&rfr_iscdi=true |