Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets

Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-12, Vol.33 (52), p.n/a
Hauptverfasser: Liu, Xi, Sun, Zhefei, Sun, Yingjuan, Lin, Haoxiang, Chen, Zhisong, Chen, Xiaoxuan, Niu, Li, Zhang, Qiaobao, Li, Hongyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Advanced functional materials
container_volume 33
creator Liu, Xi
Sun, Zhefei
Sun, Yingjuan
Lin, Haoxiang
Chen, Zhisong
Chen, Xiaoxuan
Niu, Li
Zhang, Qiaobao
Li, Hongyan
description Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is first proposed to alleviate volume variations and accelerate stable charge transport to boost K+ storage performance. The introduction of proper Bi2O3 not only provides an efficient K+ adsorption path, but also effectively buffers volume changes via conversion reaction. Accordingly, the as‐prepared anode exhibits a remarkable rate capability (149.3 mAh g−1 at 60 A g−1, 42% capacity retention with a 120‐fold current‐density increase) and extraordinary durability (1800 cycles at 5.0 A g−1, 95% capacity retention), among the best rate and cycling performance to date in potassium ion batteries (PIBs) anodes. Theoretical calculations reveal the feasible structures of Bi/Bi2O3 NDs@CSs with double protection of carbon sheets and Bi2O3 are conducive to enhance charge transfer and efficiency of electrochemical reaction. Substantial in situ/ex situ characterizations and finite element simulation further unveil high reversibility and robust mechanical behavior of Bi/Bi2O3 NDs@CSs, favorable for the reinforcement of structural stability. This study provides new insights into developing high‐performance and durable Bi‐based anodes for PIBs. The optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is elaborately prepared. Such a special structural design is favorable for superior potassium storage, delivering high rate capacity of 149.4 mAh g−1 at 60 A g−1, and robust cycling performance of 201.8 mAh g−1 is maintained over 1000 cycles at 10 A g−1.
doi_str_mv 10.1002/adfm.202307205
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2904815991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904815991</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-c214b225a1f9049f0709fba744728665f9f02fa587de943c8a3646f762b46f653</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKVsyXOaf1InOTYlhYqBYpakLhFm8YprhK7xKkgNz4BfpEvwQHU0-yOZma1g9AlJQNKCBtCXlQDRhgnISPBEepRQYXHCYuODzN9PkVn1m4JoWHI_R76moFtMOgcJ0Zvvj8-E7crvcEPpgFr1b5y3NxovGpMDRuJpxqyUuY4a_ESGmU0lGXr2I3SUtadc9XUoLSzLWUJ778aPFbDsWILju9Bm9w0Fk-rTOa5C1IaT6DOuhMvUjb2HJ0UUFp58Y999DSbPk5uvWRxM5-MEm_HOA-8NaN-xlgAtIiJHxckJHGRQej7IYuECApHsQKCKMxl7PN1BFz4oggFyxyIgPfR1V_urjave2mbdGv2tXvHpswlRjSIY-pU8Z_qTZWyTXe1qqBuU0rSrvO06zw9dJ6Ormd3h43_AG4Ves0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904815991</pqid></control><display><type>article</type><title>Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Liu, Xi ; Sun, Zhefei ; Sun, Yingjuan ; Lin, Haoxiang ; Chen, Zhisong ; Chen, Xiaoxuan ; Niu, Li ; Zhang, Qiaobao ; Li, Hongyan</creator><creatorcontrib>Liu, Xi ; Sun, Zhefei ; Sun, Yingjuan ; Lin, Haoxiang ; Chen, Zhisong ; Chen, Xiaoxuan ; Niu, Li ; Zhang, Qiaobao ; Li, Hongyan</creatorcontrib><description>Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is first proposed to alleviate volume variations and accelerate stable charge transport to boost K+ storage performance. The introduction of proper Bi2O3 not only provides an efficient K+ adsorption path, but also effectively buffers volume changes via conversion reaction. Accordingly, the as‐prepared anode exhibits a remarkable rate capability (149.3 mAh g−1 at 60 A g−1, 42% capacity retention with a 120‐fold current‐density increase) and extraordinary durability (1800 cycles at 5.0 A g−1, 95% capacity retention), among the best rate and cycling performance to date in potassium ion batteries (PIBs) anodes. Theoretical calculations reveal the feasible structures of Bi/Bi2O3 NDs@CSs with double protection of carbon sheets and Bi2O3 are conducive to enhance charge transfer and efficiency of electrochemical reaction. Substantial in situ/ex situ characterizations and finite element simulation further unveil high reversibility and robust mechanical behavior of Bi/Bi2O3 NDs@CSs, favorable for the reinforcement of structural stability. This study provides new insights into developing high‐performance and durable Bi‐based anodes for PIBs. The optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is elaborately prepared. Such a special structural design is favorable for superior potassium storage, delivering high rate capacity of 149.4 mAh g−1 at 60 A g−1, and robust cycling performance of 201.8 mAh g−1 is maintained over 1000 cycles at 10 A g−1.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202307205</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Bi/Bi2O3 nanodots ; Bismuth trioxide ; Carbon ; Charge efficiency ; Charge transfer ; Charge transport ; Durability ; Finite element method ; in situ characterizations ; Ion storage ; Materials science ; Mathematical analysis ; Mechanical properties ; Potassium ; potassium‐ion storage performance ; Reaction kinetics ; Structural stability ; theoretical simulations</subject><ispartof>Advanced functional materials, 2023-12, Vol.33 (52), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7073-5198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202307205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202307205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Sun, Zhefei</creatorcontrib><creatorcontrib>Sun, Yingjuan</creatorcontrib><creatorcontrib>Lin, Haoxiang</creatorcontrib><creatorcontrib>Chen, Zhisong</creatorcontrib><creatorcontrib>Chen, Xiaoxuan</creatorcontrib><creatorcontrib>Niu, Li</creatorcontrib><creatorcontrib>Zhang, Qiaobao</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><title>Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets</title><title>Advanced functional materials</title><description>Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is first proposed to alleviate volume variations and accelerate stable charge transport to boost K+ storage performance. The introduction of proper Bi2O3 not only provides an efficient K+ adsorption path, but also effectively buffers volume changes via conversion reaction. Accordingly, the as‐prepared anode exhibits a remarkable rate capability (149.3 mAh g−1 at 60 A g−1, 42% capacity retention with a 120‐fold current‐density increase) and extraordinary durability (1800 cycles at 5.0 A g−1, 95% capacity retention), among the best rate and cycling performance to date in potassium ion batteries (PIBs) anodes. Theoretical calculations reveal the feasible structures of Bi/Bi2O3 NDs@CSs with double protection of carbon sheets and Bi2O3 are conducive to enhance charge transfer and efficiency of electrochemical reaction. Substantial in situ/ex situ characterizations and finite element simulation further unveil high reversibility and robust mechanical behavior of Bi/Bi2O3 NDs@CSs, favorable for the reinforcement of structural stability. This study provides new insights into developing high‐performance and durable Bi‐based anodes for PIBs. The optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is elaborately prepared. Such a special structural design is favorable for superior potassium storage, delivering high rate capacity of 149.4 mAh g−1 at 60 A g−1, and robust cycling performance of 201.8 mAh g−1 is maintained over 1000 cycles at 10 A g−1.</description><subject>Anodes</subject><subject>Bi/Bi2O3 nanodots</subject><subject>Bismuth trioxide</subject><subject>Carbon</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Durability</subject><subject>Finite element method</subject><subject>in situ characterizations</subject><subject>Ion storage</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Potassium</subject><subject>potassium‐ion storage performance</subject><subject>Reaction kinetics</subject><subject>Structural stability</subject><subject>theoretical simulations</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKVsyXOaf1InOTYlhYqBYpakLhFm8YprhK7xKkgNz4BfpEvwQHU0-yOZma1g9AlJQNKCBtCXlQDRhgnISPBEepRQYXHCYuODzN9PkVn1m4JoWHI_R76moFtMOgcJ0Zvvj8-E7crvcEPpgFr1b5y3NxovGpMDRuJpxqyUuY4a_ESGmU0lGXr2I3SUtadc9XUoLSzLWUJ778aPFbDsWILju9Bm9w0Fk-rTOa5C1IaT6DOuhMvUjb2HJ0UUFp58Y999DSbPk5uvWRxM5-MEm_HOA-8NaN-xlgAtIiJHxckJHGRQej7IYuECApHsQKCKMxl7PN1BFz4oggFyxyIgPfR1V_urjave2mbdGv2tXvHpswlRjSIY-pU8Z_qTZWyTXe1qqBuU0rSrvO06zw9dJ6Ormd3h43_AG4Ves0</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Liu, Xi</creator><creator>Sun, Zhefei</creator><creator>Sun, Yingjuan</creator><creator>Lin, Haoxiang</creator><creator>Chen, Zhisong</creator><creator>Chen, Xiaoxuan</creator><creator>Niu, Li</creator><creator>Zhang, Qiaobao</creator><creator>Li, Hongyan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7073-5198</orcidid></search><sort><creationdate>20231222</creationdate><title>Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets</title><author>Liu, Xi ; Sun, Zhefei ; Sun, Yingjuan ; Lin, Haoxiang ; Chen, Zhisong ; Chen, Xiaoxuan ; Niu, Li ; Zhang, Qiaobao ; Li, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-c214b225a1f9049f0709fba744728665f9f02fa587de943c8a3646f762b46f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Bi/Bi2O3 nanodots</topic><topic>Bismuth trioxide</topic><topic>Carbon</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Durability</topic><topic>Finite element method</topic><topic>in situ characterizations</topic><topic>Ion storage</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Potassium</topic><topic>potassium‐ion storage performance</topic><topic>Reaction kinetics</topic><topic>Structural stability</topic><topic>theoretical simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Sun, Zhefei</creatorcontrib><creatorcontrib>Sun, Yingjuan</creatorcontrib><creatorcontrib>Lin, Haoxiang</creatorcontrib><creatorcontrib>Chen, Zhisong</creatorcontrib><creatorcontrib>Chen, Xiaoxuan</creatorcontrib><creatorcontrib>Niu, Li</creatorcontrib><creatorcontrib>Zhang, Qiaobao</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xi</au><au>Sun, Zhefei</au><au>Sun, Yingjuan</au><au>Lin, Haoxiang</au><au>Chen, Zhisong</au><au>Chen, Xiaoxuan</au><au>Niu, Li</au><au>Zhang, Qiaobao</au><au>Li, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets</atitle><jtitle>Advanced functional materials</jtitle><date>2023-12-22</date><risdate>2023</risdate><volume>33</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Bismuth (Bi)‐based materials merit high theoretical volumetric specific capacity (3800 mAh mL⁻1) but suffer from huge volume variations and sluggish reaction kinetics during cycling. Herein, the optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is first proposed to alleviate volume variations and accelerate stable charge transport to boost K+ storage performance. The introduction of proper Bi2O3 not only provides an efficient K+ adsorption path, but also effectively buffers volume changes via conversion reaction. Accordingly, the as‐prepared anode exhibits a remarkable rate capability (149.3 mAh g−1 at 60 A g−1, 42% capacity retention with a 120‐fold current‐density increase) and extraordinary durability (1800 cycles at 5.0 A g−1, 95% capacity retention), among the best rate and cycling performance to date in potassium ion batteries (PIBs) anodes. Theoretical calculations reveal the feasible structures of Bi/Bi2O3 NDs@CSs with double protection of carbon sheets and Bi2O3 are conducive to enhance charge transfer and efficiency of electrochemical reaction. Substantial in situ/ex situ characterizations and finite element simulation further unveil high reversibility and robust mechanical behavior of Bi/Bi2O3 NDs@CSs, favorable for the reinforcement of structural stability. This study provides new insights into developing high‐performance and durable Bi‐based anodes for PIBs. The optimal framework of Bi/Bi2O3 nanodots enriched in suitable outer amorphous carbon sheets (Bi/Bi2O3 NDs@CSs) is elaborately prepared. Such a special structural design is favorable for superior potassium storage, delivering high rate capacity of 149.4 mAh g−1 at 60 A g−1, and robust cycling performance of 201.8 mAh g−1 is maintained over 1000 cycles at 10 A g−1.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202307205</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7073-5198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-12, Vol.33 (52), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2904815991
source Wiley Online Library - AutoHoldings Journals
subjects Anodes
Bi/Bi2O3 nanodots
Bismuth trioxide
Carbon
Charge efficiency
Charge transfer
Charge transport
Durability
Finite element method
in situ characterizations
Ion storage
Materials science
Mathematical analysis
Mechanical properties
Potassium
potassium‐ion storage performance
Reaction kinetics
Structural stability
theoretical simulations
title Fast and Long‐Lasting Potassium‐Ion Storage Enabled by Rationally Engineering Strain‐Relaxation Bi/Bi2O3 Nanodots Embedded in Carbon Sheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Long%E2%80%90Lasting%20Potassium%E2%80%90Ion%20Storage%20Enabled%20by%20Rationally%20Engineering%20Strain%E2%80%90Relaxation%20Bi/Bi2O3%20Nanodots%20Embedded%20in%20Carbon%20Sheets&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Xi&rft.date=2023-12-22&rft.volume=33&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202307205&rft_dat=%3Cproquest_wiley%3E2904815991%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904815991&rft_id=info:pmid/&rfr_iscdi=true