Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature

The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-11, Vol.6 (6), p.n/a
Hauptverfasser: Gu, Tian, Chen, Likun, Huang, Yanfei, Ma, Jiabin, Shi, Peiran, Biao, Jie, Liu, Ming, Lv, Wei, He, Yanbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Energy & environmental materials (Hoboken, N.J.)
container_volume 6
creator Gu, Tian
Chen, Likun
Huang, Yanfei
Ma, Jiabin
Shi, Peiran
Biao, Jie
Liu, Ming
Lv, Wei
He, Yanbing
description The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P[VDF‐TrFE‐CTFE]) composite interlayer (B‐TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B‐TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B‐TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid‐state LiFePO4/LATP@B‐TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room‐temperature cycling performance. We develop a multifunctional ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by introducing the strong ferroelectric material BaTiO3 into P(VDF‐TrFE‐CTFE) polymer (B‐TERB), which can reduce the Li/LATP interfacial impendence, suppress side reactions and more importantly can generate an inverse polarized electric field. Uniform electric field and ion concentration distributions is achieved at the interface of B‐TERB with Li metal anode to induce homogeneous Li‐ions plating.
doi_str_mv 10.1002/eem2.12531
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2904815954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904815954</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2611-2a3d5019c807996aacdf847828c4c0d291fd11454690eaa231b4ad852f3e328f3</originalsourceid><addsrcrecordid>eNpNkLtOw0AQRS0EEhGk4QtWooHCZmcffpQhciBSoiASamtjj8NGfrFeK0rHJ9Dwg3wJTkJBNXdmru6VjuPcAPWAUvaAWDIPmORw5gyYDKRLufTP_-lLZ9i2W9qbKXAB0cD5jquNrhCNrjZkgsbUWGBqjU7JtLJoCrVHQ9Zod4gVmWnw-KigHl_1Krh7WYh7TlSV9R_7rruSzNGqguS1IUur1gWSZV3o7Ofzq18tkkdl-1CNLVk0aJQ9tCpLXuu6JCssj7fO4LVzkauixeHfvHLeJvFq_OzOFk_T8WjmNswHcJnimaQQpSENoshXKs3yUAQhC1OR0oxFkGcAQgo_oqgU47AWKgslyzlyFub8yrk95Tam_uiwtcm27kzVVyYsoiIEGUnRu-Dk2ukC90ljdKnMPgGaHLAnB-zJEXsSx3N2VPwXVjx3QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904815954</pqid></control><display><type>article</type><title>Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature</title><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Gu, Tian ; Chen, Likun ; Huang, Yanfei ; Ma, Jiabin ; Shi, Peiran ; Biao, Jie ; Liu, Ming ; Lv, Wei ; He, Yanbing</creator><creatorcontrib>Gu, Tian ; Chen, Likun ; Huang, Yanfei ; Ma, Jiabin ; Shi, Peiran ; Biao, Jie ; Liu, Ming ; Lv, Wei ; He, Yanbing</creatorcontrib><description>The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P[VDF‐TrFE‐CTFE]) composite interlayer (B‐TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B‐TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B‐TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid‐state LiFePO4/LATP@B‐TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room‐temperature cycling performance. We develop a multifunctional ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by introducing the strong ferroelectric material BaTiO3 into P(VDF‐TrFE‐CTFE) polymer (B‐TERB), which can reduce the Li/LATP interfacial impendence, suppress side reactions and more importantly can generate an inverse polarized electric field. Uniform electric field and ion concentration distributions is achieved at the interface of B‐TERB with Li metal anode to induce homogeneous Li‐ions plating.</description><identifier>ISSN: 2575-0356</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12531</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Barium titanates ; BaTiO3 ; Chlorotrifluoroethylene ; dendrites ; Electric contacts ; Electric fields ; Electrolytes ; ferroelectric ; Ferroelectric materials ; Ferroelectricity ; Interface stability ; Interlayers ; Li1.3Al0.3Ti1.7(PO4)3 ; Lithium ; Lithium batteries ; lithium metal ; Metals ; Room temperature ; Side reactions ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Energy &amp; environmental materials (Hoboken, N.J.), 2023-11, Vol.6 (6), p.n/a</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Zhengzhou University.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5787-5498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12531$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12531$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,11562,27924,27925,45574,45575,46052,46409,46476,46833</link.rule.ids></links><search><creatorcontrib>Gu, Tian</creatorcontrib><creatorcontrib>Chen, Likun</creatorcontrib><creatorcontrib>Huang, Yanfei</creatorcontrib><creatorcontrib>Ma, Jiabin</creatorcontrib><creatorcontrib>Shi, Peiran</creatorcontrib><creatorcontrib>Biao, Jie</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><creatorcontrib>He, Yanbing</creatorcontrib><title>Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature</title><title>Energy &amp; environmental materials (Hoboken, N.J.)</title><description>The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P[VDF‐TrFE‐CTFE]) composite interlayer (B‐TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B‐TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B‐TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid‐state LiFePO4/LATP@B‐TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room‐temperature cycling performance. We develop a multifunctional ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by introducing the strong ferroelectric material BaTiO3 into P(VDF‐TrFE‐CTFE) polymer (B‐TERB), which can reduce the Li/LATP interfacial impendence, suppress side reactions and more importantly can generate an inverse polarized electric field. Uniform electric field and ion concentration distributions is achieved at the interface of B‐TERB with Li metal anode to induce homogeneous Li‐ions plating.</description><subject>Barium titanates</subject><subject>BaTiO3</subject><subject>Chlorotrifluoroethylene</subject><subject>dendrites</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrolytes</subject><subject>ferroelectric</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Interface stability</subject><subject>Interlayers</subject><subject>Li1.3Al0.3Ti1.7(PO4)3</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal</subject><subject>Metals</subject><subject>Room temperature</subject><subject>Side reactions</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>2575-0356</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkLtOw0AQRS0EEhGk4QtWooHCZmcffpQhciBSoiASamtjj8NGfrFeK0rHJ9Dwg3wJTkJBNXdmru6VjuPcAPWAUvaAWDIPmORw5gyYDKRLufTP_-lLZ9i2W9qbKXAB0cD5jquNrhCNrjZkgsbUWGBqjU7JtLJoCrVHQ9Zod4gVmWnw-KigHl_1Krh7WYh7TlSV9R_7rruSzNGqguS1IUur1gWSZV3o7Ofzq18tkkdl-1CNLVk0aJQ9tCpLXuu6JCssj7fO4LVzkauixeHfvHLeJvFq_OzOFk_T8WjmNswHcJnimaQQpSENoshXKs3yUAQhC1OR0oxFkGcAQgo_oqgU47AWKgslyzlyFub8yrk95Tam_uiwtcm27kzVVyYsoiIEGUnRu-Dk2ukC90ljdKnMPgGaHLAnB-zJEXsSx3N2VPwXVjx3QQ</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Gu, Tian</creator><creator>Chen, Likun</creator><creator>Huang, Yanfei</creator><creator>Ma, Jiabin</creator><creator>Shi, Peiran</creator><creator>Biao, Jie</creator><creator>Liu, Ming</creator><creator>Lv, Wei</creator><creator>He, Yanbing</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5787-5498</orcidid></search><sort><creationdate>202311</creationdate><title>Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature</title><author>Gu, Tian ; Chen, Likun ; Huang, Yanfei ; Ma, Jiabin ; Shi, Peiran ; Biao, Jie ; Liu, Ming ; Lv, Wei ; He, Yanbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2611-2a3d5019c807996aacdf847828c4c0d291fd11454690eaa231b4ad852f3e328f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium titanates</topic><topic>BaTiO3</topic><topic>Chlorotrifluoroethylene</topic><topic>dendrites</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrolytes</topic><topic>ferroelectric</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Interface stability</topic><topic>Interlayers</topic><topic>Li1.3Al0.3Ti1.7(PO4)3</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal</topic><topic>Metals</topic><topic>Room temperature</topic><topic>Side reactions</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Tian</creatorcontrib><creatorcontrib>Chen, Likun</creatorcontrib><creatorcontrib>Huang, Yanfei</creatorcontrib><creatorcontrib>Ma, Jiabin</creatorcontrib><creatorcontrib>Shi, Peiran</creatorcontrib><creatorcontrib>Biao, Jie</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><creatorcontrib>He, Yanbing</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Tian</au><au>Chen, Likun</au><au>Huang, Yanfei</au><au>Ma, Jiabin</au><au>Shi, Peiran</au><au>Biao, Jie</au><au>Liu, Ming</au><au>Lv, Wei</au><au>He, Yanbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature</atitle><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>6</volume><issue>6</issue><epage>n/a</epage><issn>2575-0356</issn><eissn>2575-0356</eissn><abstract>The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P[VDF‐TrFE‐CTFE]) composite interlayer (B‐TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B‐TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B‐TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid‐state LiFePO4/LATP@B‐TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room‐temperature cycling performance. We develop a multifunctional ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by introducing the strong ferroelectric material BaTiO3 into P(VDF‐TrFE‐CTFE) polymer (B‐TERB), which can reduce the Li/LATP interfacial impendence, suppress side reactions and more importantly can generate an inverse polarized electric field. Uniform electric field and ion concentration distributions is achieved at the interface of B‐TERB with Li metal anode to induce homogeneous Li‐ions plating.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12531</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5787-5498</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2575-0356
ispartof Energy & environmental materials (Hoboken, N.J.), 2023-11, Vol.6 (6), p.n/a
issn 2575-0356
2575-0356
language eng
recordid cdi_proquest_journals_2904815954
source Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Barium titanates
BaTiO3
Chlorotrifluoroethylene
dendrites
Electric contacts
Electric fields
Electrolytes
ferroelectric
Ferroelectric materials
Ferroelectricity
Interface stability
Interlayers
Li1.3Al0.3Ti1.7(PO4)3
Lithium
Lithium batteries
lithium metal
Metals
Room temperature
Side reactions
Vinylidene
Vinylidene fluoride
title Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Ferroelectric%20Interlayer%20between%20Li1.3Al0.3Ti1.7(PO4)3%20and%20Lithium%20Metal%20for%20Stable%20Solid%E2%80%90State%20Batteries%20Operating%20at%20Room%20Temperature&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Gu,%20Tian&rft.date=2023-11&rft.volume=6&rft.issue=6&rft.epage=n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12531&rft_dat=%3Cproquest_wiley%3E2904815954%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904815954&rft_id=info:pmid/&rfr_iscdi=true