Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature
The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferro...
Gespeichert in:
Veröffentlicht in: | Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-11, Vol.6 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Energy & environmental materials (Hoboken, N.J.) |
container_volume | 6 |
creator | Gu, Tian Chen, Likun Huang, Yanfei Ma, Jiabin Shi, Peiran Biao, Jie Liu, Ming Lv, Wei He, Yanbing |
description | The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P[VDF‐TrFE‐CTFE]) composite interlayer (B‐TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B‐TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B‐TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid‐state LiFePO4/LATP@B‐TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room‐temperature cycling performance.
We develop a multifunctional ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by introducing the strong ferroelectric material BaTiO3 into P(VDF‐TrFE‐CTFE) polymer (B‐TERB), which can reduce the Li/LATP interfacial impendence, suppress side reactions and more importantly can generate an inverse polarized electric field. Uniform electric field and ion concentration distributions is achieved at the interface of B‐TERB with Li metal anode to induce homogeneous Li‐ions plating. |
doi_str_mv | 10.1002/eem2.12531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2904815954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904815954</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2611-2a3d5019c807996aacdf847828c4c0d291fd11454690eaa231b4ad852f3e328f3</originalsourceid><addsrcrecordid>eNpNkLtOw0AQRS0EEhGk4QtWooHCZmcffpQhciBSoiASamtjj8NGfrFeK0rHJ9Dwg3wJTkJBNXdmru6VjuPcAPWAUvaAWDIPmORw5gyYDKRLufTP_-lLZ9i2W9qbKXAB0cD5jquNrhCNrjZkgsbUWGBqjU7JtLJoCrVHQ9Zod4gVmWnw-KigHl_1Krh7WYh7TlSV9R_7rruSzNGqguS1IUur1gWSZV3o7Ofzq18tkkdl-1CNLVk0aJQ9tCpLXuu6JCssj7fO4LVzkauixeHfvHLeJvFq_OzOFk_T8WjmNswHcJnimaQQpSENoshXKs3yUAQhC1OR0oxFkGcAQgo_oqgU47AWKgslyzlyFub8yrk95Tam_uiwtcm27kzVVyYsoiIEGUnRu-Dk2ukC90ljdKnMPgGaHLAnB-zJEXsSx3N2VPwXVjx3QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904815954</pqid></control><display><type>article</type><title>Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature</title><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Gu, Tian ; Chen, Likun ; Huang, Yanfei ; Ma, Jiabin ; Shi, Peiran ; Biao, Jie ; Liu, Ming ; Lv, Wei ; He, Yanbing</creator><creatorcontrib>Gu, Tian ; Chen, Likun ; Huang, Yanfei ; Ma, Jiabin ; Shi, Peiran ; Biao, Jie ; Liu, Ming ; Lv, Wei ; He, Yanbing</creatorcontrib><description>The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P[VDF‐TrFE‐CTFE]) composite interlayer (B‐TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B‐TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B‐TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid‐state LiFePO4/LATP@B‐TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room‐temperature cycling performance.
We develop a multifunctional ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by introducing the strong ferroelectric material BaTiO3 into P(VDF‐TrFE‐CTFE) polymer (B‐TERB), which can reduce the Li/LATP interfacial impendence, suppress side reactions and more importantly can generate an inverse polarized electric field. Uniform electric field and ion concentration distributions is achieved at the interface of B‐TERB with Li metal anode to induce homogeneous Li‐ions plating.</description><identifier>ISSN: 2575-0356</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12531</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Barium titanates ; BaTiO3 ; Chlorotrifluoroethylene ; dendrites ; Electric contacts ; Electric fields ; Electrolytes ; ferroelectric ; Ferroelectric materials ; Ferroelectricity ; Interface stability ; Interlayers ; Li1.3Al0.3Ti1.7(PO4)3 ; Lithium ; Lithium batteries ; lithium metal ; Metals ; Room temperature ; Side reactions ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Energy & environmental materials (Hoboken, N.J.), 2023-11, Vol.6 (6), p.n/a</ispartof><rights>2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5787-5498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12531$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12531$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,11562,27924,27925,45574,45575,46052,46409,46476,46833</link.rule.ids></links><search><creatorcontrib>Gu, Tian</creatorcontrib><creatorcontrib>Chen, Likun</creatorcontrib><creatorcontrib>Huang, Yanfei</creatorcontrib><creatorcontrib>Ma, Jiabin</creatorcontrib><creatorcontrib>Shi, Peiran</creatorcontrib><creatorcontrib>Biao, Jie</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><creatorcontrib>He, Yanbing</creatorcontrib><title>Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature</title><title>Energy & environmental materials (Hoboken, N.J.)</title><description>The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P[VDF‐TrFE‐CTFE]) composite interlayer (B‐TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B‐TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B‐TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid‐state LiFePO4/LATP@B‐TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room‐temperature cycling performance.
We develop a multifunctional ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by introducing the strong ferroelectric material BaTiO3 into P(VDF‐TrFE‐CTFE) polymer (B‐TERB), which can reduce the Li/LATP interfacial impendence, suppress side reactions and more importantly can generate an inverse polarized electric field. Uniform electric field and ion concentration distributions is achieved at the interface of B‐TERB with Li metal anode to induce homogeneous Li‐ions plating.</description><subject>Barium titanates</subject><subject>BaTiO3</subject><subject>Chlorotrifluoroethylene</subject><subject>dendrites</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrolytes</subject><subject>ferroelectric</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Interface stability</subject><subject>Interlayers</subject><subject>Li1.3Al0.3Ti1.7(PO4)3</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal</subject><subject>Metals</subject><subject>Room temperature</subject><subject>Side reactions</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>2575-0356</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkLtOw0AQRS0EEhGk4QtWooHCZmcffpQhciBSoiASamtjj8NGfrFeK0rHJ9Dwg3wJTkJBNXdmru6VjuPcAPWAUvaAWDIPmORw5gyYDKRLufTP_-lLZ9i2W9qbKXAB0cD5jquNrhCNrjZkgsbUWGBqjU7JtLJoCrVHQ9Zod4gVmWnw-KigHl_1Krh7WYh7TlSV9R_7rruSzNGqguS1IUur1gWSZV3o7Ofzq18tkkdl-1CNLVk0aJQ9tCpLXuu6JCssj7fO4LVzkauixeHfvHLeJvFq_OzOFk_T8WjmNswHcJnimaQQpSENoshXKs3yUAQhC1OR0oxFkGcAQgo_oqgU47AWKgslyzlyFub8yrk95Tam_uiwtcm27kzVVyYsoiIEGUnRu-Dk2ukC90ljdKnMPgGaHLAnB-zJEXsSx3N2VPwXVjx3QQ</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Gu, Tian</creator><creator>Chen, Likun</creator><creator>Huang, Yanfei</creator><creator>Ma, Jiabin</creator><creator>Shi, Peiran</creator><creator>Biao, Jie</creator><creator>Liu, Ming</creator><creator>Lv, Wei</creator><creator>He, Yanbing</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5787-5498</orcidid></search><sort><creationdate>202311</creationdate><title>Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature</title><author>Gu, Tian ; Chen, Likun ; Huang, Yanfei ; Ma, Jiabin ; Shi, Peiran ; Biao, Jie ; Liu, Ming ; Lv, Wei ; He, Yanbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2611-2a3d5019c807996aacdf847828c4c0d291fd11454690eaa231b4ad852f3e328f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium titanates</topic><topic>BaTiO3</topic><topic>Chlorotrifluoroethylene</topic><topic>dendrites</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrolytes</topic><topic>ferroelectric</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Interface stability</topic><topic>Interlayers</topic><topic>Li1.3Al0.3Ti1.7(PO4)3</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal</topic><topic>Metals</topic><topic>Room temperature</topic><topic>Side reactions</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Tian</creatorcontrib><creatorcontrib>Chen, Likun</creatorcontrib><creatorcontrib>Huang, Yanfei</creatorcontrib><creatorcontrib>Ma, Jiabin</creatorcontrib><creatorcontrib>Shi, Peiran</creatorcontrib><creatorcontrib>Biao, Jie</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><creatorcontrib>He, Yanbing</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Tian</au><au>Chen, Likun</au><au>Huang, Yanfei</au><au>Ma, Jiabin</au><au>Shi, Peiran</au><au>Biao, Jie</au><au>Liu, Ming</au><au>Lv, Wei</au><au>He, Yanbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature</atitle><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>6</volume><issue>6</issue><epage>n/a</epage><issn>2575-0356</issn><eissn>2575-0356</eissn><abstract>The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high‐energy density solid‐state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P[VDF‐TrFE‐CTFE]) composite interlayer (B‐TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B‐TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B‐TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid‐state LiFePO4/LATP@B‐TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room‐temperature cycling performance.
We develop a multifunctional ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by introducing the strong ferroelectric material BaTiO3 into P(VDF‐TrFE‐CTFE) polymer (B‐TERB), which can reduce the Li/LATP interfacial impendence, suppress side reactions and more importantly can generate an inverse polarized electric field. Uniform electric field and ion concentration distributions is achieved at the interface of B‐TERB with Li metal anode to induce homogeneous Li‐ions plating.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12531</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5787-5498</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2575-0356 |
ispartof | Energy & environmental materials (Hoboken, N.J.), 2023-11, Vol.6 (6), p.n/a |
issn | 2575-0356 2575-0356 |
language | eng |
recordid | cdi_proquest_journals_2904815954 |
source | Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Barium titanates BaTiO3 Chlorotrifluoroethylene dendrites Electric contacts Electric fields Electrolytes ferroelectric Ferroelectric materials Ferroelectricity Interface stability Interlayers Li1.3Al0.3Ti1.7(PO4)3 Lithium Lithium batteries lithium metal Metals Room temperature Side reactions Vinylidene Vinylidene fluoride |
title | Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid‐State Batteries Operating at Room Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Ferroelectric%20Interlayer%20between%20Li1.3Al0.3Ti1.7(PO4)3%20and%20Lithium%20Metal%20for%20Stable%20Solid%E2%80%90State%20Batteries%20Operating%20at%20Room%20Temperature&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Gu,%20Tian&rft.date=2023-11&rft.volume=6&rft.issue=6&rft.epage=n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12531&rft_dat=%3Cproquest_wiley%3E2904815954%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904815954&rft_id=info:pmid/&rfr_iscdi=true |