Control of threshold voltages in Si/SiGe quantum devices via optical illumination
Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect tran...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wolfe, M A Coe, Brighton X Edwards, Justin S Kovach, Tyler J McJunkin, Thomas Harpt, Benjamin Savage, D E Lagally, M G McDermott, R Friesen, Mark Kolkowitz, Shimon Eriksson, M A |
description | Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect transistor using a near infrared (780 nm) laser diode. We find that illumination under an applied gate voltage can be used to set a specific, stable, and reproducible threshold voltage that, over a wide range in gate bias, is equal to that gate bias. Outside this range, the threshold voltage can still be tuned, although the resulting threshold voltage is no longer equal to the applied gate bias during illumination. We present a simple and intuitive model that provides a mechanism for the tunability in gate bias. The model presented also explains why cryogenic illumination is successful at resetting quantum dot qubit devices after undesired charging events. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2904771027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904771027</sourcerecordid><originalsourceid>FETCH-proquest_journals_29047710273</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNnImlgOhM_FkN7qSBIpeUXqAtzy-DD-B0hu9sWCCSJI4uqRA7Flrbc87FORdZlgTsVZBxM2mgFlw3K9uRbmAh7eRHWUADJZ5KfCiYvDTOD9CoBeuVFpRAo8NaakCt_YBGOiRzYNtWaqvCX_fseL-9i2c0zjR5ZV3Vk5_NSpW48jTPYy7y5L_rC8g0P6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904771027</pqid></control><display><type>article</type><title>Control of threshold voltages in Si/SiGe quantum devices via optical illumination</title><source>Free E- Journals</source><creator>Wolfe, M A ; Coe, Brighton X ; Edwards, Justin S ; Kovach, Tyler J ; McJunkin, Thomas ; Harpt, Benjamin ; Savage, D E ; Lagally, M G ; McDermott, R ; Friesen, Mark ; Kolkowitz, Shimon ; Eriksson, M A</creator><creatorcontrib>Wolfe, M A ; Coe, Brighton X ; Edwards, Justin S ; Kovach, Tyler J ; McJunkin, Thomas ; Harpt, Benjamin ; Savage, D E ; Lagally, M G ; McDermott, R ; Friesen, Mark ; Kolkowitz, Shimon ; Eriksson, M A</creatorcontrib><description>Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect transistor using a near infrared (780 nm) laser diode. We find that illumination under an applied gate voltage can be used to set a specific, stable, and reproducible threshold voltage that, over a wide range in gate bias, is equal to that gate bias. Outside this range, the threshold voltage can still be tuned, although the resulting threshold voltage is no longer equal to the applied gate bias during illumination. We present a simple and intuitive model that provides a mechanism for the tunability in gate bias. The model presented also explains why cryogenic illumination is successful at resetting quantum dot qubit devices after undesired charging events.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Charge injection ; Cryogenic temperature ; Field effect transistors ; Illumination ; Infrared lasers ; Quantum dots ; Qubits (quantum computing) ; Semiconductor devices ; Semiconductor lasers ; Silicon germanides ; Threshold voltage</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wolfe, M A</creatorcontrib><creatorcontrib>Coe, Brighton X</creatorcontrib><creatorcontrib>Edwards, Justin S</creatorcontrib><creatorcontrib>Kovach, Tyler J</creatorcontrib><creatorcontrib>McJunkin, Thomas</creatorcontrib><creatorcontrib>Harpt, Benjamin</creatorcontrib><creatorcontrib>Savage, D E</creatorcontrib><creatorcontrib>Lagally, M G</creatorcontrib><creatorcontrib>McDermott, R</creatorcontrib><creatorcontrib>Friesen, Mark</creatorcontrib><creatorcontrib>Kolkowitz, Shimon</creatorcontrib><creatorcontrib>Eriksson, M A</creatorcontrib><title>Control of threshold voltages in Si/SiGe quantum devices via optical illumination</title><title>arXiv.org</title><description>Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect transistor using a near infrared (780 nm) laser diode. We find that illumination under an applied gate voltage can be used to set a specific, stable, and reproducible threshold voltage that, over a wide range in gate bias, is equal to that gate bias. Outside this range, the threshold voltage can still be tuned, although the resulting threshold voltage is no longer equal to the applied gate bias during illumination. We present a simple and intuitive model that provides a mechanism for the tunability in gate bias. The model presented also explains why cryogenic illumination is successful at resetting quantum dot qubit devices after undesired charging events.</description><subject>Bias</subject><subject>Charge injection</subject><subject>Cryogenic temperature</subject><subject>Field effect transistors</subject><subject>Illumination</subject><subject>Infrared lasers</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Semiconductor devices</subject><subject>Semiconductor lasers</subject><subject>Silicon germanides</subject><subject>Threshold voltage</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNnImlgOhM_FkN7qSBIpeUXqAtzy-DD-B0hu9sWCCSJI4uqRA7Flrbc87FORdZlgTsVZBxM2mgFlw3K9uRbmAh7eRHWUADJZ5KfCiYvDTOD9CoBeuVFpRAo8NaakCt_YBGOiRzYNtWaqvCX_fseL-9i2c0zjR5ZV3Vk5_NSpW48jTPYy7y5L_rC8g0P6U</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Wolfe, M A</creator><creator>Coe, Brighton X</creator><creator>Edwards, Justin S</creator><creator>Kovach, Tyler J</creator><creator>McJunkin, Thomas</creator><creator>Harpt, Benjamin</creator><creator>Savage, D E</creator><creator>Lagally, M G</creator><creator>McDermott, R</creator><creator>Friesen, Mark</creator><creator>Kolkowitz, Shimon</creator><creator>Eriksson, M A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Control of threshold voltages in Si/SiGe quantum devices via optical illumination</title><author>Wolfe, M A ; Coe, Brighton X ; Edwards, Justin S ; Kovach, Tyler J ; McJunkin, Thomas ; Harpt, Benjamin ; Savage, D E ; Lagally, M G ; McDermott, R ; Friesen, Mark ; Kolkowitz, Shimon ; Eriksson, M A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29047710273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Charge injection</topic><topic>Cryogenic temperature</topic><topic>Field effect transistors</topic><topic>Illumination</topic><topic>Infrared lasers</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Semiconductor devices</topic><topic>Semiconductor lasers</topic><topic>Silicon germanides</topic><topic>Threshold voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolfe, M A</creatorcontrib><creatorcontrib>Coe, Brighton X</creatorcontrib><creatorcontrib>Edwards, Justin S</creatorcontrib><creatorcontrib>Kovach, Tyler J</creatorcontrib><creatorcontrib>McJunkin, Thomas</creatorcontrib><creatorcontrib>Harpt, Benjamin</creatorcontrib><creatorcontrib>Savage, D E</creatorcontrib><creatorcontrib>Lagally, M G</creatorcontrib><creatorcontrib>McDermott, R</creatorcontrib><creatorcontrib>Friesen, Mark</creatorcontrib><creatorcontrib>Kolkowitz, Shimon</creatorcontrib><creatorcontrib>Eriksson, M A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfe, M A</au><au>Coe, Brighton X</au><au>Edwards, Justin S</au><au>Kovach, Tyler J</au><au>McJunkin, Thomas</au><au>Harpt, Benjamin</au><au>Savage, D E</au><au>Lagally, M G</au><au>McDermott, R</au><au>Friesen, Mark</au><au>Kolkowitz, Shimon</au><au>Eriksson, M A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Control of threshold voltages in Si/SiGe quantum devices via optical illumination</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect transistor using a near infrared (780 nm) laser diode. We find that illumination under an applied gate voltage can be used to set a specific, stable, and reproducible threshold voltage that, over a wide range in gate bias, is equal to that gate bias. Outside this range, the threshold voltage can still be tuned, although the resulting threshold voltage is no longer equal to the applied gate bias during illumination. We present a simple and intuitive model that provides a mechanism for the tunability in gate bias. The model presented also explains why cryogenic illumination is successful at resetting quantum dot qubit devices after undesired charging events.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2904771027 |
source | Free E- Journals |
subjects | Bias Charge injection Cryogenic temperature Field effect transistors Illumination Infrared lasers Quantum dots Qubits (quantum computing) Semiconductor devices Semiconductor lasers Silicon germanides Threshold voltage |
title | Control of threshold voltages in Si/SiGe quantum devices via optical illumination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Control%20of%20threshold%20voltages%20in%20Si/SiGe%20quantum%20devices%20via%20optical%20illumination&rft.jtitle=arXiv.org&rft.au=Wolfe,%20M%20A&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2904771027%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904771027&rft_id=info:pmid/&rfr_iscdi=true |