Control of threshold voltages in Si/SiGe quantum devices via optical illumination

Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Wolfe, M A, Coe, Brighton X, Edwards, Justin S, Kovach, Tyler J, McJunkin, Thomas, Harpt, Benjamin, Savage, D E, Lagally, M G, McDermott, R, Friesen, Mark, Kolkowitz, Shimon, Eriksson, M A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wolfe, M A
Coe, Brighton X
Edwards, Justin S
Kovach, Tyler J
McJunkin, Thomas
Harpt, Benjamin
Savage, D E
Lagally, M G
McDermott, R
Friesen, Mark
Kolkowitz, Shimon
Eriksson, M A
description Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect transistor using a near infrared (780 nm) laser diode. We find that illumination under an applied gate voltage can be used to set a specific, stable, and reproducible threshold voltage that, over a wide range in gate bias, is equal to that gate bias. Outside this range, the threshold voltage can still be tuned, although the resulting threshold voltage is no longer equal to the applied gate bias during illumination. We present a simple and intuitive model that provides a mechanism for the tunability in gate bias. The model presented also explains why cryogenic illumination is successful at resetting quantum dot qubit devices after undesired charging events.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2904771027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904771027</sourcerecordid><originalsourceid>FETCH-proquest_journals_29047710273</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNnImlgOhM_FkN7qSBIpeUXqAtzy-DD-B0hu9sWCCSJI4uqRA7Flrbc87FORdZlgTsVZBxM2mgFlw3K9uRbmAh7eRHWUADJZ5KfCiYvDTOD9CoBeuVFpRAo8NaakCt_YBGOiRzYNtWaqvCX_fseL-9i2c0zjR5ZV3Vk5_NSpW48jTPYy7y5L_rC8g0P6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904771027</pqid></control><display><type>article</type><title>Control of threshold voltages in Si/SiGe quantum devices via optical illumination</title><source>Free E- Journals</source><creator>Wolfe, M A ; Coe, Brighton X ; Edwards, Justin S ; Kovach, Tyler J ; McJunkin, Thomas ; Harpt, Benjamin ; Savage, D E ; Lagally, M G ; McDermott, R ; Friesen, Mark ; Kolkowitz, Shimon ; Eriksson, M A</creator><creatorcontrib>Wolfe, M A ; Coe, Brighton X ; Edwards, Justin S ; Kovach, Tyler J ; McJunkin, Thomas ; Harpt, Benjamin ; Savage, D E ; Lagally, M G ; McDermott, R ; Friesen, Mark ; Kolkowitz, Shimon ; Eriksson, M A</creatorcontrib><description>Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect transistor using a near infrared (780 nm) laser diode. We find that illumination under an applied gate voltage can be used to set a specific, stable, and reproducible threshold voltage that, over a wide range in gate bias, is equal to that gate bias. Outside this range, the threshold voltage can still be tuned, although the resulting threshold voltage is no longer equal to the applied gate bias during illumination. We present a simple and intuitive model that provides a mechanism for the tunability in gate bias. The model presented also explains why cryogenic illumination is successful at resetting quantum dot qubit devices after undesired charging events.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Charge injection ; Cryogenic temperature ; Field effect transistors ; Illumination ; Infrared lasers ; Quantum dots ; Qubits (quantum computing) ; Semiconductor devices ; Semiconductor lasers ; Silicon germanides ; Threshold voltage</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wolfe, M A</creatorcontrib><creatorcontrib>Coe, Brighton X</creatorcontrib><creatorcontrib>Edwards, Justin S</creatorcontrib><creatorcontrib>Kovach, Tyler J</creatorcontrib><creatorcontrib>McJunkin, Thomas</creatorcontrib><creatorcontrib>Harpt, Benjamin</creatorcontrib><creatorcontrib>Savage, D E</creatorcontrib><creatorcontrib>Lagally, M G</creatorcontrib><creatorcontrib>McDermott, R</creatorcontrib><creatorcontrib>Friesen, Mark</creatorcontrib><creatorcontrib>Kolkowitz, Shimon</creatorcontrib><creatorcontrib>Eriksson, M A</creatorcontrib><title>Control of threshold voltages in Si/SiGe quantum devices via optical illumination</title><title>arXiv.org</title><description>Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect transistor using a near infrared (780 nm) laser diode. We find that illumination under an applied gate voltage can be used to set a specific, stable, and reproducible threshold voltage that, over a wide range in gate bias, is equal to that gate bias. Outside this range, the threshold voltage can still be tuned, although the resulting threshold voltage is no longer equal to the applied gate bias during illumination. We present a simple and intuitive model that provides a mechanism for the tunability in gate bias. The model presented also explains why cryogenic illumination is successful at resetting quantum dot qubit devices after undesired charging events.</description><subject>Bias</subject><subject>Charge injection</subject><subject>Cryogenic temperature</subject><subject>Field effect transistors</subject><subject>Illumination</subject><subject>Infrared lasers</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Semiconductor devices</subject><subject>Semiconductor lasers</subject><subject>Silicon germanides</subject><subject>Threshold voltage</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNnImlgOhM_FkN7qSBIpeUXqAtzy-DD-B0hu9sWCCSJI4uqRA7Flrbc87FORdZlgTsVZBxM2mgFlw3K9uRbmAh7eRHWUADJZ5KfCiYvDTOD9CoBeuVFpRAo8NaakCt_YBGOiRzYNtWaqvCX_fseL-9i2c0zjR5ZV3Vk5_NSpW48jTPYy7y5L_rC8g0P6U</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Wolfe, M A</creator><creator>Coe, Brighton X</creator><creator>Edwards, Justin S</creator><creator>Kovach, Tyler J</creator><creator>McJunkin, Thomas</creator><creator>Harpt, Benjamin</creator><creator>Savage, D E</creator><creator>Lagally, M G</creator><creator>McDermott, R</creator><creator>Friesen, Mark</creator><creator>Kolkowitz, Shimon</creator><creator>Eriksson, M A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Control of threshold voltages in Si/SiGe quantum devices via optical illumination</title><author>Wolfe, M A ; Coe, Brighton X ; Edwards, Justin S ; Kovach, Tyler J ; McJunkin, Thomas ; Harpt, Benjamin ; Savage, D E ; Lagally, M G ; McDermott, R ; Friesen, Mark ; Kolkowitz, Shimon ; Eriksson, M A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29047710273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Charge injection</topic><topic>Cryogenic temperature</topic><topic>Field effect transistors</topic><topic>Illumination</topic><topic>Infrared lasers</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Semiconductor devices</topic><topic>Semiconductor lasers</topic><topic>Silicon germanides</topic><topic>Threshold voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolfe, M A</creatorcontrib><creatorcontrib>Coe, Brighton X</creatorcontrib><creatorcontrib>Edwards, Justin S</creatorcontrib><creatorcontrib>Kovach, Tyler J</creatorcontrib><creatorcontrib>McJunkin, Thomas</creatorcontrib><creatorcontrib>Harpt, Benjamin</creatorcontrib><creatorcontrib>Savage, D E</creatorcontrib><creatorcontrib>Lagally, M G</creatorcontrib><creatorcontrib>McDermott, R</creatorcontrib><creatorcontrib>Friesen, Mark</creatorcontrib><creatorcontrib>Kolkowitz, Shimon</creatorcontrib><creatorcontrib>Eriksson, M A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfe, M A</au><au>Coe, Brighton X</au><au>Edwards, Justin S</au><au>Kovach, Tyler J</au><au>McJunkin, Thomas</au><au>Harpt, Benjamin</au><au>Savage, D E</au><au>Lagally, M G</au><au>McDermott, R</au><au>Friesen, Mark</au><au>Kolkowitz, Shimon</au><au>Eriksson, M A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Control of threshold voltages in Si/SiGe quantum devices via optical illumination</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Optical illumination of quantum-dot qubit devices at cryogenic temperatures, while not well studied, is often used to recover operating conditions after undesired shocking events or charge injection. Here, we demonstrate systematic threshold voltage shifts in a dopant-free, Si/SiGe field effect transistor using a near infrared (780 nm) laser diode. We find that illumination under an applied gate voltage can be used to set a specific, stable, and reproducible threshold voltage that, over a wide range in gate bias, is equal to that gate bias. Outside this range, the threshold voltage can still be tuned, although the resulting threshold voltage is no longer equal to the applied gate bias during illumination. We present a simple and intuitive model that provides a mechanism for the tunability in gate bias. The model presented also explains why cryogenic illumination is successful at resetting quantum dot qubit devices after undesired charging events.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2904771027
source Free E- Journals
subjects Bias
Charge injection
Cryogenic temperature
Field effect transistors
Illumination
Infrared lasers
Quantum dots
Qubits (quantum computing)
Semiconductor devices
Semiconductor lasers
Silicon germanides
Threshold voltage
title Control of threshold voltages in Si/SiGe quantum devices via optical illumination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Control%20of%20threshold%20voltages%20in%20Si/SiGe%20quantum%20devices%20via%20optical%20illumination&rft.jtitle=arXiv.org&rft.au=Wolfe,%20M%20A&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2904771027%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904771027&rft_id=info:pmid/&rfr_iscdi=true