Understanding and Estimating Domain Complexity Across Domains

Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Doctor, Katarina, Kejriwal, Mayank, Holder, Lawrence, Kildebeck, Eric, Resmini, Emma, Pereyda, Christopher, Steininger, Robert J, Olivença, Daniel V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Doctor, Katarina
Kejriwal, Mayank
Holder, Lawrence
Kildebeck, Eric
Resmini, Emma
Pereyda, Christopher
Steininger, Robert J
Olivença, Daniel V
description Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2904765691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904765691</sourcerecordid><originalsourceid>FETCH-proquest_journals_29047656913</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDc1LSS0qLknMS8nMS1cAUgquxSWZuYklIK5Lfm5iZp6Cc35uQU5qRWZJpYJjclF-cTFUopiHgTUtMac4lRdKczMou7mGOHvoFhTlF5amFpfEZ-WXFuUBpeKNLA1MzM1MzSwNjYlTBQCeZzg-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904765691</pqid></control><display><type>article</type><title>Understanding and Estimating Domain Complexity Across Domains</title><source>Free E- Journals</source><creator>Doctor, Katarina ; Kejriwal, Mayank ; Holder, Lawrence ; Kildebeck, Eric ; Resmini, Emma ; Pereyda, Christopher ; Steininger, Robert J ; Olivença, Daniel V</creator><creatorcontrib>Doctor, Katarina ; Kejriwal, Mayank ; Holder, Lawrence ; Kildebeck, Eric ; Resmini, Emma ; Pereyda, Christopher ; Steininger, Robert J ; Olivença, Daniel V</creatorcontrib><description>Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Complexity</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Doctor, Katarina</creatorcontrib><creatorcontrib>Kejriwal, Mayank</creatorcontrib><creatorcontrib>Holder, Lawrence</creatorcontrib><creatorcontrib>Kildebeck, Eric</creatorcontrib><creatorcontrib>Resmini, Emma</creatorcontrib><creatorcontrib>Pereyda, Christopher</creatorcontrib><creatorcontrib>Steininger, Robert J</creatorcontrib><creatorcontrib>Olivença, Daniel V</creatorcontrib><title>Understanding and Estimating Domain Complexity Across Domains</title><title>arXiv.org</title><description>Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains.</description><subject>Artificial intelligence</subject><subject>Complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDc1LSS0qLknMS8nMS1cAUgquxSWZuYklIK5Lfm5iZp6Cc35uQU5qRWZJpYJjclF-cTFUopiHgTUtMac4lRdKczMou7mGOHvoFhTlF5amFpfEZ-WXFuUBpeKNLA1MzM1MzSwNjYlTBQCeZzg-</recordid><startdate>20231220</startdate><enddate>20231220</enddate><creator>Doctor, Katarina</creator><creator>Kejriwal, Mayank</creator><creator>Holder, Lawrence</creator><creator>Kildebeck, Eric</creator><creator>Resmini, Emma</creator><creator>Pereyda, Christopher</creator><creator>Steininger, Robert J</creator><creator>Olivença, Daniel V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231220</creationdate><title>Understanding and Estimating Domain Complexity Across Domains</title><author>Doctor, Katarina ; Kejriwal, Mayank ; Holder, Lawrence ; Kildebeck, Eric ; Resmini, Emma ; Pereyda, Christopher ; Steininger, Robert J ; Olivença, Daniel V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29047656913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Doctor, Katarina</creatorcontrib><creatorcontrib>Kejriwal, Mayank</creatorcontrib><creatorcontrib>Holder, Lawrence</creatorcontrib><creatorcontrib>Kildebeck, Eric</creatorcontrib><creatorcontrib>Resmini, Emma</creatorcontrib><creatorcontrib>Pereyda, Christopher</creatorcontrib><creatorcontrib>Steininger, Robert J</creatorcontrib><creatorcontrib>Olivença, Daniel V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doctor, Katarina</au><au>Kejriwal, Mayank</au><au>Holder, Lawrence</au><au>Kildebeck, Eric</au><au>Resmini, Emma</au><au>Pereyda, Christopher</au><au>Steininger, Robert J</au><au>Olivença, Daniel V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Understanding and Estimating Domain Complexity Across Domains</atitle><jtitle>arXiv.org</jtitle><date>2023-12-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2904765691
source Free E- Journals
subjects Artificial intelligence
Complexity
title Understanding and Estimating Domain Complexity Across Domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Understanding%20and%20Estimating%20Domain%20Complexity%20Across%20Domains&rft.jtitle=arXiv.org&rft.au=Doctor,%20Katarina&rft.date=2023-12-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2904765691%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904765691&rft_id=info:pmid/&rfr_iscdi=true