Understanding and Estimating Domain Complexity Across Domains
Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Doctor, Katarina Kejriwal, Mayank Holder, Lawrence Kildebeck, Eric Resmini, Emma Pereyda, Christopher Steininger, Robert J Olivença, Daniel V |
description | Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2904765691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904765691</sourcerecordid><originalsourceid>FETCH-proquest_journals_29047656913</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDc1LSS0qLknMS8nMS1cAUgquxSWZuYklIK5Lfm5iZp6Cc35uQU5qRWZJpYJjclF-cTFUopiHgTUtMac4lRdKczMou7mGOHvoFhTlF5amFpfEZ-WXFuUBpeKNLA1MzM1MzSwNjYlTBQCeZzg-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904765691</pqid></control><display><type>article</type><title>Understanding and Estimating Domain Complexity Across Domains</title><source>Free E- Journals</source><creator>Doctor, Katarina ; Kejriwal, Mayank ; Holder, Lawrence ; Kildebeck, Eric ; Resmini, Emma ; Pereyda, Christopher ; Steininger, Robert J ; Olivença, Daniel V</creator><creatorcontrib>Doctor, Katarina ; Kejriwal, Mayank ; Holder, Lawrence ; Kildebeck, Eric ; Resmini, Emma ; Pereyda, Christopher ; Steininger, Robert J ; Olivença, Daniel V</creatorcontrib><description>Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Complexity</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Doctor, Katarina</creatorcontrib><creatorcontrib>Kejriwal, Mayank</creatorcontrib><creatorcontrib>Holder, Lawrence</creatorcontrib><creatorcontrib>Kildebeck, Eric</creatorcontrib><creatorcontrib>Resmini, Emma</creatorcontrib><creatorcontrib>Pereyda, Christopher</creatorcontrib><creatorcontrib>Steininger, Robert J</creatorcontrib><creatorcontrib>Olivença, Daniel V</creatorcontrib><title>Understanding and Estimating Domain Complexity Across Domains</title><title>arXiv.org</title><description>Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains.</description><subject>Artificial intelligence</subject><subject>Complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDc1LSS0qLknMS8nMS1cAUgquxSWZuYklIK5Lfm5iZp6Cc35uQU5qRWZJpYJjclF-cTFUopiHgTUtMac4lRdKczMou7mGOHvoFhTlF5amFpfEZ-WXFuUBpeKNLA1MzM1MzSwNjYlTBQCeZzg-</recordid><startdate>20231220</startdate><enddate>20231220</enddate><creator>Doctor, Katarina</creator><creator>Kejriwal, Mayank</creator><creator>Holder, Lawrence</creator><creator>Kildebeck, Eric</creator><creator>Resmini, Emma</creator><creator>Pereyda, Christopher</creator><creator>Steininger, Robert J</creator><creator>Olivença, Daniel V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231220</creationdate><title>Understanding and Estimating Domain Complexity Across Domains</title><author>Doctor, Katarina ; Kejriwal, Mayank ; Holder, Lawrence ; Kildebeck, Eric ; Resmini, Emma ; Pereyda, Christopher ; Steininger, Robert J ; Olivença, Daniel V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29047656913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Doctor, Katarina</creatorcontrib><creatorcontrib>Kejriwal, Mayank</creatorcontrib><creatorcontrib>Holder, Lawrence</creatorcontrib><creatorcontrib>Kildebeck, Eric</creatorcontrib><creatorcontrib>Resmini, Emma</creatorcontrib><creatorcontrib>Pereyda, Christopher</creatorcontrib><creatorcontrib>Steininger, Robert J</creatorcontrib><creatorcontrib>Olivença, Daniel V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doctor, Katarina</au><au>Kejriwal, Mayank</au><au>Holder, Lawrence</au><au>Kildebeck, Eric</au><au>Resmini, Emma</au><au>Pereyda, Christopher</au><au>Steininger, Robert J</au><au>Olivença, Daniel V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Understanding and Estimating Domain Complexity Across Domains</atitle><jtitle>arXiv.org</jtitle><date>2023-12-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Artificial Intelligence (AI) systems, trained in controlled environments, often struggle in real-world complexities. We propose a general framework for estimating domain complexity across diverse environments, like open-world learning and real-world applications. This framework distinguishes between intrinsic complexity (inherent to the domain) and extrinsic complexity (dependent on the AI agent). By analyzing dimensionality, sparsity, and diversity within these categories, we offer a comprehensive view of domain challenges. This approach enables quantitative predictions of AI difficulty during environment transitions, avoids bias in novel situations, and helps navigate the vast search spaces of open-world domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2904765691 |
source | Free E- Journals |
subjects | Artificial intelligence Complexity |
title | Understanding and Estimating Domain Complexity Across Domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Understanding%20and%20Estimating%20Domain%20Complexity%20Across%20Domains&rft.jtitle=arXiv.org&rft.au=Doctor,%20Katarina&rft.date=2023-12-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2904765691%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904765691&rft_id=info:pmid/&rfr_iscdi=true |