Industrial Process Control Using DPCA and Hierarchical Pareto Optimization
The control of large-scale industrial systems has several criteria, such as ensuring high productivity, low production costs and the lowest possible environmental impact. These criteria must be established for all subsystems of the large-scale system. This study is devoted to the development of a hi...
Gespeichert in:
Veröffentlicht in: | Processes 2023-12, Vol.11 (12), p.3329 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 3329 |
container_title | Processes |
container_volume | 11 |
creator | Arsenyev, Dmitriy Malykhina, Galina Shkodyrev, Viacheslav |
description | The control of large-scale industrial systems has several criteria, such as ensuring high productivity, low production costs and the lowest possible environmental impact. These criteria must be established for all subsystems of the large-scale system. This study is devoted to the development of a hierarchical control system that meets several of these criteria and allows for the separate optimization of each subsystem. Multicriteria optimization is based on the processing of data characterizing production processes, which makes it possible to organize a multidimensional statistical control process. Using neural networks to model the technological processes of subsystems and the method of dynamic principal component analysis (DPCA) to reduce the dimensionality of control problems allows us to find more efficient solutions. Using the example of a two-level hierarchy, we showed a variant of the connection between two subsystems by parameters. |
doi_str_mv | 10.3390/pr11123329 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2904724699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779284960</galeid><sourcerecordid>A779284960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-68510a10a174f49b4742217ace29cc7cc38bd8cc56b391eef8437cc2f3b7948f3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb34Cxa8CVvz1U1yLKu2lUJ7sOeQzSY1ZZusSXrQX--WCjozMMPjvTfwALhHcEqIgE99RAhhQrC4AiOMMSsFQ-z6330LJikd4FACET6rRuBt5dtTytGprtjGoE1KRR18jqErdsn5ffG8reeF8m2xdCaqqD-cPnNVNDkUmz67o_tW2QV_B26s6pKZ_O4x2L2-vNfLcr1ZrOr5utRYkFxWfIagOg-jloqGMooxYkobLLRmWhPetFzrWdUQgYyxnJIBxZY0TFBuyRg8XHz7GD5PJmV5CKfoh5cSC0gZppUQA2t6Ye1VZ6TzNuSo9NCtOTodvLFuwOeMCcypqOAgeLwIdAwpRWNlH91RxS-JoDznK__yJT9CbmvP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904724699</pqid></control><display><type>article</type><title>Industrial Process Control Using DPCA and Hierarchical Pareto Optimization</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Arsenyev, Dmitriy ; Malykhina, Galina ; Shkodyrev, Viacheslav</creator><creatorcontrib>Arsenyev, Dmitriy ; Malykhina, Galina ; Shkodyrev, Viacheslav</creatorcontrib><description>The control of large-scale industrial systems has several criteria, such as ensuring high productivity, low production costs and the lowest possible environmental impact. These criteria must be established for all subsystems of the large-scale system. This study is devoted to the development of a hierarchical control system that meets several of these criteria and allows for the separate optimization of each subsystem. Multicriteria optimization is based on the processing of data characterizing production processes, which makes it possible to organize a multidimensional statistical control process. Using neural networks to model the technological processes of subsystems and the method of dynamic principal component analysis (DPCA) to reduce the dimensionality of control problems allows us to find more efficient solutions. Using the example of a two-level hierarchy, we showed a variant of the connection between two subsystems by parameters.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11123329</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Control systems ; Environmental impact ; Genetic algorithms ; Hierarchies ; Machine learning ; Methods ; Multiple criterion ; Neural networks ; Optimization ; Pareto efficiency ; Pareto optimization ; Principal components analysis ; Process controls ; Production costs ; Production processes ; Subsystems</subject><ispartof>Processes, 2023-12, Vol.11 (12), p.3329</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-68510a10a174f49b4742217ace29cc7cc38bd8cc56b391eef8437cc2f3b7948f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Arsenyev, Dmitriy</creatorcontrib><creatorcontrib>Malykhina, Galina</creatorcontrib><creatorcontrib>Shkodyrev, Viacheslav</creatorcontrib><title>Industrial Process Control Using DPCA and Hierarchical Pareto Optimization</title><title>Processes</title><description>The control of large-scale industrial systems has several criteria, such as ensuring high productivity, low production costs and the lowest possible environmental impact. These criteria must be established for all subsystems of the large-scale system. This study is devoted to the development of a hierarchical control system that meets several of these criteria and allows for the separate optimization of each subsystem. Multicriteria optimization is based on the processing of data characterizing production processes, which makes it possible to organize a multidimensional statistical control process. Using neural networks to model the technological processes of subsystems and the method of dynamic principal component analysis (DPCA) to reduce the dimensionality of control problems allows us to find more efficient solutions. Using the example of a two-level hierarchy, we showed a variant of the connection between two subsystems by parameters.</description><subject>Analysis</subject><subject>Control systems</subject><subject>Environmental impact</subject><subject>Genetic algorithms</subject><subject>Hierarchies</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multiple criterion</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pareto efficiency</subject><subject>Pareto optimization</subject><subject>Principal components analysis</subject><subject>Process controls</subject><subject>Production costs</subject><subject>Production processes</subject><subject>Subsystems</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUE1LAzEQDaJgqb34Cxa8CVvz1U1yLKu2lUJ7sOeQzSY1ZZusSXrQX--WCjozMMPjvTfwALhHcEqIgE99RAhhQrC4AiOMMSsFQ-z6330LJikd4FACET6rRuBt5dtTytGprtjGoE1KRR18jqErdsn5ffG8reeF8m2xdCaqqD-cPnNVNDkUmz67o_tW2QV_B26s6pKZ_O4x2L2-vNfLcr1ZrOr5utRYkFxWfIagOg-jloqGMooxYkobLLRmWhPetFzrWdUQgYyxnJIBxZY0TFBuyRg8XHz7GD5PJmV5CKfoh5cSC0gZppUQA2t6Ye1VZ6TzNuSo9NCtOTodvLFuwOeMCcypqOAgeLwIdAwpRWNlH91RxS-JoDznK__yJT9CbmvP</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Arsenyev, Dmitriy</creator><creator>Malykhina, Galina</creator><creator>Shkodyrev, Viacheslav</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231201</creationdate><title>Industrial Process Control Using DPCA and Hierarchical Pareto Optimization</title><author>Arsenyev, Dmitriy ; Malykhina, Galina ; Shkodyrev, Viacheslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-68510a10a174f49b4742217ace29cc7cc38bd8cc56b391eef8437cc2f3b7948f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Control systems</topic><topic>Environmental impact</topic><topic>Genetic algorithms</topic><topic>Hierarchies</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multiple criterion</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pareto efficiency</topic><topic>Pareto optimization</topic><topic>Principal components analysis</topic><topic>Process controls</topic><topic>Production costs</topic><topic>Production processes</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arsenyev, Dmitriy</creatorcontrib><creatorcontrib>Malykhina, Galina</creatorcontrib><creatorcontrib>Shkodyrev, Viacheslav</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arsenyev, Dmitriy</au><au>Malykhina, Galina</au><au>Shkodyrev, Viacheslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Industrial Process Control Using DPCA and Hierarchical Pareto Optimization</atitle><jtitle>Processes</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><spage>3329</spage><pages>3329-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The control of large-scale industrial systems has several criteria, such as ensuring high productivity, low production costs and the lowest possible environmental impact. These criteria must be established for all subsystems of the large-scale system. This study is devoted to the development of a hierarchical control system that meets several of these criteria and allows for the separate optimization of each subsystem. Multicriteria optimization is based on the processing of data characterizing production processes, which makes it possible to organize a multidimensional statistical control process. Using neural networks to model the technological processes of subsystems and the method of dynamic principal component analysis (DPCA) to reduce the dimensionality of control problems allows us to find more efficient solutions. Using the example of a two-level hierarchy, we showed a variant of the connection between two subsystems by parameters.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11123329</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-12, Vol.11 (12), p.3329 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2904724699 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analysis Control systems Environmental impact Genetic algorithms Hierarchies Machine learning Methods Multiple criterion Neural networks Optimization Pareto efficiency Pareto optimization Principal components analysis Process controls Production costs Production processes Subsystems |
title | Industrial Process Control Using DPCA and Hierarchical Pareto Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Industrial%20Process%20Control%20Using%20DPCA%20and%20Hierarchical%20Pareto%20Optimization&rft.jtitle=Processes&rft.au=Arsenyev,%20Dmitriy&rft.date=2023-12-01&rft.volume=11&rft.issue=12&rft.spage=3329&rft.pages=3329-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11123329&rft_dat=%3Cgale_proqu%3EA779284960%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904724699&rft_id=info:pmid/&rft_galeid=A779284960&rfr_iscdi=true |