LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis
Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning c...
Gespeichert in:
Veröffentlicht in: | Processes 2023-12, Vol.11 (12), p.3351 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 3351 |
container_title | Processes |
container_volume | 11 |
creator | Zheng, Xiaoyang Feng, Zhixia Lei, Zijian Chen, Lei |
description | Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning capabilities of a BP neural network (BPNN). The proposed method not only addresses the limitations of traditional deep networks, which rely on manual feature extraction and expert experience but also eliminates the complexity associated with designing and training deep network architectures. To be specific, only two statistical parameters, root mean square (RMS) and standard deviation (SD), are calculated on different Legendre multiwavelet decomposition levels to thoroughly represent more salient and comprehensive fault characteristics by using several scale and wavelet bases with various regularities. Then, the mapping relation between the extracted features and the health conditions of the bearing is automatically learned by the simpler BPNN classifier rather than the complex deep network structure. Finally, a few experiments on a popular bearing dataset are implemented to verify the effectiveness and robustness of the presented method. The experimental findings illustrate that the proposed method exhibits a high degree of precision in diagnosing various fault patterns. It outperforms other methods in terms of diagnostic accuracy, making it a viable and promising solution for real-world industrial applications in the field of rotating machinery. |
doi_str_mv | 10.3390/pr11123351 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2904717677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779284893</galeid><sourcerecordid>A779284893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ed65c6b725fc83ce9cc6aa23e070a2a21caaff5690275a38b1e97e2da1b6be153</originalsourceid><addsrcrecordid>eNpNUFFLwzAQDqLgmHvxFwR8EzqbZG0a37a5qTCriOJjuaaXmdE1M2lF_70dE_Tu4TuO77vj-wg5Z_FYCBVf7TxjjAuRsCMy4JzLSEkmj__Np2QUwibuSzGRJemA5Ku3aPaU59d0SnP3iTVdIrSdR7r4aj3o1rqGPmD77ipqnKfPrq5ts6YzBL_HJXR1S28srBsXbDgjJwbqgKNfHJLX5eJlfhetHm_v59NVpIWYtBFWaaLTUvLE6ExoVFqnAFxgLGPgwJkGMCZJVcxlAiIrGSqJvAJWpiWyRAzJxeHuzruPDkNbbFznm_5lwVU86a2mUvas8YG1hhoL2xi3t9R3hVurXYPG9vuplIpnk0yJXnB5EGjvQvBoip23W_DfBYuLfcbFX8biBz7FbLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904717677</pqid></control><display><type>article</type><title>LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zheng, Xiaoyang ; Feng, Zhixia ; Lei, Zijian ; Chen, Lei</creator><creatorcontrib>Zheng, Xiaoyang ; Feng, Zhixia ; Lei, Zijian ; Chen, Lei</creatorcontrib><description>Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning capabilities of a BP neural network (BPNN). The proposed method not only addresses the limitations of traditional deep networks, which rely on manual feature extraction and expert experience but also eliminates the complexity associated with designing and training deep network architectures. To be specific, only two statistical parameters, root mean square (RMS) and standard deviation (SD), are calculated on different Legendre multiwavelet decomposition levels to thoroughly represent more salient and comprehensive fault characteristics by using several scale and wavelet bases with various regularities. Then, the mapping relation between the extracted features and the health conditions of the bearing is automatically learned by the simpler BPNN classifier rather than the complex deep network structure. Finally, a few experiments on a popular bearing dataset are implemented to verify the effectiveness and robustness of the presented method. The experimental findings illustrate that the proposed method exhibits a high degree of precision in diagnosing various fault patterns. It outperforms other methods in terms of diagnostic accuracy, making it a viable and promising solution for real-world industrial applications in the field of rotating machinery.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11123351</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Analysis ; Artificial neural networks ; Back propagation networks ; Bearings ; Complexity ; Datasets ; Deep learning ; Fault diagnosis ; Feature extraction ; Fourier transforms ; Industrial applications ; Machine learning ; Machinery ; Maintenance costs ; Methods ; Neural networks ; Roller bearings ; Rotating machinery ; Signal processing ; Support vector machines ; Wavelet transforms</subject><ispartof>Processes, 2023-12, Vol.11 (12), p.3351</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ed65c6b725fc83ce9cc6aa23e070a2a21caaff5690275a38b1e97e2da1b6be153</citedby><cites>FETCH-LOGICAL-c334t-ed65c6b725fc83ce9cc6aa23e070a2a21caaff5690275a38b1e97e2da1b6be153</cites><orcidid>0000-0002-1719-4169 ; 0000-0002-5047-2175 ; 0000-0003-4409-2114 ; 0000-0002-4193-8826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaoyang</creatorcontrib><creatorcontrib>Feng, Zhixia</creatorcontrib><creatorcontrib>Lei, Zijian</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><title>LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis</title><title>Processes</title><description>Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning capabilities of a BP neural network (BPNN). The proposed method not only addresses the limitations of traditional deep networks, which rely on manual feature extraction and expert experience but also eliminates the complexity associated with designing and training deep network architectures. To be specific, only two statistical parameters, root mean square (RMS) and standard deviation (SD), are calculated on different Legendre multiwavelet decomposition levels to thoroughly represent more salient and comprehensive fault characteristics by using several scale and wavelet bases with various regularities. Then, the mapping relation between the extracted features and the health conditions of the bearing is automatically learned by the simpler BPNN classifier rather than the complex deep network structure. Finally, a few experiments on a popular bearing dataset are implemented to verify the effectiveness and robustness of the presented method. The experimental findings illustrate that the proposed method exhibits a high degree of precision in diagnosing various fault patterns. It outperforms other methods in terms of diagnostic accuracy, making it a viable and promising solution for real-world industrial applications in the field of rotating machinery.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Bearings</subject><subject>Complexity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Industrial applications</subject><subject>Machine learning</subject><subject>Machinery</subject><subject>Maintenance costs</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Roller bearings</subject><subject>Rotating machinery</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUFFLwzAQDqLgmHvxFwR8EzqbZG0a37a5qTCriOJjuaaXmdE1M2lF_70dE_Tu4TuO77vj-wg5Z_FYCBVf7TxjjAuRsCMy4JzLSEkmj__Np2QUwibuSzGRJemA5Ku3aPaU59d0SnP3iTVdIrSdR7r4aj3o1rqGPmD77ipqnKfPrq5ts6YzBL_HJXR1S28srBsXbDgjJwbqgKNfHJLX5eJlfhetHm_v59NVpIWYtBFWaaLTUvLE6ExoVFqnAFxgLGPgwJkGMCZJVcxlAiIrGSqJvAJWpiWyRAzJxeHuzruPDkNbbFznm_5lwVU86a2mUvas8YG1hhoL2xi3t9R3hVurXYPG9vuplIpnk0yJXnB5EGjvQvBoip23W_DfBYuLfcbFX8biBz7FbLg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zheng, Xiaoyang</creator><creator>Feng, Zhixia</creator><creator>Lei, Zijian</creator><creator>Chen, Lei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-1719-4169</orcidid><orcidid>https://orcid.org/0000-0002-5047-2175</orcidid><orcidid>https://orcid.org/0000-0003-4409-2114</orcidid><orcidid>https://orcid.org/0000-0002-4193-8826</orcidid></search><sort><creationdate>20231201</creationdate><title>LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis</title><author>Zheng, Xiaoyang ; Feng, Zhixia ; Lei, Zijian ; Chen, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ed65c6b725fc83ce9cc6aa23e070a2a21caaff5690275a38b1e97e2da1b6be153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Bearings</topic><topic>Complexity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Industrial applications</topic><topic>Machine learning</topic><topic>Machinery</topic><topic>Maintenance costs</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Roller bearings</topic><topic>Rotating machinery</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaoyang</creatorcontrib><creatorcontrib>Feng, Zhixia</creatorcontrib><creatorcontrib>Lei, Zijian</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaoyang</au><au>Feng, Zhixia</au><au>Lei, Zijian</au><au>Chen, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis</atitle><jtitle>Processes</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><spage>3351</spage><pages>3351-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning capabilities of a BP neural network (BPNN). The proposed method not only addresses the limitations of traditional deep networks, which rely on manual feature extraction and expert experience but also eliminates the complexity associated with designing and training deep network architectures. To be specific, only two statistical parameters, root mean square (RMS) and standard deviation (SD), are calculated on different Legendre multiwavelet decomposition levels to thoroughly represent more salient and comprehensive fault characteristics by using several scale and wavelet bases with various regularities. Then, the mapping relation between the extracted features and the health conditions of the bearing is automatically learned by the simpler BPNN classifier rather than the complex deep network structure. Finally, a few experiments on a popular bearing dataset are implemented to verify the effectiveness and robustness of the presented method. The experimental findings illustrate that the proposed method exhibits a high degree of precision in diagnosing various fault patterns. It outperforms other methods in terms of diagnostic accuracy, making it a viable and promising solution for real-world industrial applications in the field of rotating machinery.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11123351</doi><orcidid>https://orcid.org/0000-0002-1719-4169</orcidid><orcidid>https://orcid.org/0000-0002-5047-2175</orcidid><orcidid>https://orcid.org/0000-0003-4409-2114</orcidid><orcidid>https://orcid.org/0000-0002-4193-8826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-12, Vol.11 (12), p.3351 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2904717677 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Analysis Artificial neural networks Back propagation networks Bearings Complexity Datasets Deep learning Fault diagnosis Feature extraction Fourier transforms Industrial applications Machine learning Machinery Maintenance costs Methods Neural networks Roller bearings Rotating machinery Signal processing Support vector machines Wavelet transforms |
title | LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LW-BPNN:%20A%20Novel%20Feature%20Extraction%20Method%20for%20Rolling%20Bearing%20Fault%20Diagnosis&rft.jtitle=Processes&rft.au=Zheng,%20Xiaoyang&rft.date=2023-12-01&rft.volume=11&rft.issue=12&rft.spage=3351&rft.pages=3351-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11123351&rft_dat=%3Cgale_proqu%3EA779284893%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904717677&rft_id=info:pmid/&rft_galeid=A779284893&rfr_iscdi=true |