LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis

Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-12, Vol.11 (12), p.3351
Hauptverfasser: Zheng, Xiaoyang, Feng, Zhixia, Lei, Zijian, Chen, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 3351
container_title Processes
container_volume 11
creator Zheng, Xiaoyang
Feng, Zhixia
Lei, Zijian
Chen, Lei
description Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning capabilities of a BP neural network (BPNN). The proposed method not only addresses the limitations of traditional deep networks, which rely on manual feature extraction and expert experience but also eliminates the complexity associated with designing and training deep network architectures. To be specific, only two statistical parameters, root mean square (RMS) and standard deviation (SD), are calculated on different Legendre multiwavelet decomposition levels to thoroughly represent more salient and comprehensive fault characteristics by using several scale and wavelet bases with various regularities. Then, the mapping relation between the extracted features and the health conditions of the bearing is automatically learned by the simpler BPNN classifier rather than the complex deep network structure. Finally, a few experiments on a popular bearing dataset are implemented to verify the effectiveness and robustness of the presented method. The experimental findings illustrate that the proposed method exhibits a high degree of precision in diagnosing various fault patterns. It outperforms other methods in terms of diagnostic accuracy, making it a viable and promising solution for real-world industrial applications in the field of rotating machinery.
doi_str_mv 10.3390/pr11123351
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2904717677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779284893</galeid><sourcerecordid>A779284893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ed65c6b725fc83ce9cc6aa23e070a2a21caaff5690275a38b1e97e2da1b6be153</originalsourceid><addsrcrecordid>eNpNUFFLwzAQDqLgmHvxFwR8EzqbZG0a37a5qTCriOJjuaaXmdE1M2lF_70dE_Tu4TuO77vj-wg5Z_FYCBVf7TxjjAuRsCMy4JzLSEkmj__Np2QUwibuSzGRJemA5Ku3aPaU59d0SnP3iTVdIrSdR7r4aj3o1rqGPmD77ipqnKfPrq5ts6YzBL_HJXR1S28srBsXbDgjJwbqgKNfHJLX5eJlfhetHm_v59NVpIWYtBFWaaLTUvLE6ExoVFqnAFxgLGPgwJkGMCZJVcxlAiIrGSqJvAJWpiWyRAzJxeHuzruPDkNbbFznm_5lwVU86a2mUvas8YG1hhoL2xi3t9R3hVurXYPG9vuplIpnk0yJXnB5EGjvQvBoip23W_DfBYuLfcbFX8biBz7FbLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904717677</pqid></control><display><type>article</type><title>LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zheng, Xiaoyang ; Feng, Zhixia ; Lei, Zijian ; Chen, Lei</creator><creatorcontrib>Zheng, Xiaoyang ; Feng, Zhixia ; Lei, Zijian ; Chen, Lei</creatorcontrib><description>Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning capabilities of a BP neural network (BPNN). The proposed method not only addresses the limitations of traditional deep networks, which rely on manual feature extraction and expert experience but also eliminates the complexity associated with designing and training deep network architectures. To be specific, only two statistical parameters, root mean square (RMS) and standard deviation (SD), are calculated on different Legendre multiwavelet decomposition levels to thoroughly represent more salient and comprehensive fault characteristics by using several scale and wavelet bases with various regularities. Then, the mapping relation between the extracted features and the health conditions of the bearing is automatically learned by the simpler BPNN classifier rather than the complex deep network structure. Finally, a few experiments on a popular bearing dataset are implemented to verify the effectiveness and robustness of the presented method. The experimental findings illustrate that the proposed method exhibits a high degree of precision in diagnosing various fault patterns. It outperforms other methods in terms of diagnostic accuracy, making it a viable and promising solution for real-world industrial applications in the field of rotating machinery.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11123351</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Analysis ; Artificial neural networks ; Back propagation networks ; Bearings ; Complexity ; Datasets ; Deep learning ; Fault diagnosis ; Feature extraction ; Fourier transforms ; Industrial applications ; Machine learning ; Machinery ; Maintenance costs ; Methods ; Neural networks ; Roller bearings ; Rotating machinery ; Signal processing ; Support vector machines ; Wavelet transforms</subject><ispartof>Processes, 2023-12, Vol.11 (12), p.3351</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ed65c6b725fc83ce9cc6aa23e070a2a21caaff5690275a38b1e97e2da1b6be153</citedby><cites>FETCH-LOGICAL-c334t-ed65c6b725fc83ce9cc6aa23e070a2a21caaff5690275a38b1e97e2da1b6be153</cites><orcidid>0000-0002-1719-4169 ; 0000-0002-5047-2175 ; 0000-0003-4409-2114 ; 0000-0002-4193-8826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaoyang</creatorcontrib><creatorcontrib>Feng, Zhixia</creatorcontrib><creatorcontrib>Lei, Zijian</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><title>LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis</title><title>Processes</title><description>Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning capabilities of a BP neural network (BPNN). The proposed method not only addresses the limitations of traditional deep networks, which rely on manual feature extraction and expert experience but also eliminates the complexity associated with designing and training deep network architectures. To be specific, only two statistical parameters, root mean square (RMS) and standard deviation (SD), are calculated on different Legendre multiwavelet decomposition levels to thoroughly represent more salient and comprehensive fault characteristics by using several scale and wavelet bases with various regularities. Then, the mapping relation between the extracted features and the health conditions of the bearing is automatically learned by the simpler BPNN classifier rather than the complex deep network structure. Finally, a few experiments on a popular bearing dataset are implemented to verify the effectiveness and robustness of the presented method. The experimental findings illustrate that the proposed method exhibits a high degree of precision in diagnosing various fault patterns. It outperforms other methods in terms of diagnostic accuracy, making it a viable and promising solution for real-world industrial applications in the field of rotating machinery.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Bearings</subject><subject>Complexity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Industrial applications</subject><subject>Machine learning</subject><subject>Machinery</subject><subject>Maintenance costs</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Roller bearings</subject><subject>Rotating machinery</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUFFLwzAQDqLgmHvxFwR8EzqbZG0a37a5qTCriOJjuaaXmdE1M2lF_70dE_Tu4TuO77vj-wg5Z_FYCBVf7TxjjAuRsCMy4JzLSEkmj__Np2QUwibuSzGRJemA5Ku3aPaU59d0SnP3iTVdIrSdR7r4aj3o1rqGPmD77ipqnKfPrq5ts6YzBL_HJXR1S28srBsXbDgjJwbqgKNfHJLX5eJlfhetHm_v59NVpIWYtBFWaaLTUvLE6ExoVFqnAFxgLGPgwJkGMCZJVcxlAiIrGSqJvAJWpiWyRAzJxeHuzruPDkNbbFznm_5lwVU86a2mUvas8YG1hhoL2xi3t9R3hVurXYPG9vuplIpnk0yJXnB5EGjvQvBoip23W_DfBYuLfcbFX8biBz7FbLg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zheng, Xiaoyang</creator><creator>Feng, Zhixia</creator><creator>Lei, Zijian</creator><creator>Chen, Lei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-1719-4169</orcidid><orcidid>https://orcid.org/0000-0002-5047-2175</orcidid><orcidid>https://orcid.org/0000-0003-4409-2114</orcidid><orcidid>https://orcid.org/0000-0002-4193-8826</orcidid></search><sort><creationdate>20231201</creationdate><title>LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis</title><author>Zheng, Xiaoyang ; Feng, Zhixia ; Lei, Zijian ; Chen, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ed65c6b725fc83ce9cc6aa23e070a2a21caaff5690275a38b1e97e2da1b6be153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Bearings</topic><topic>Complexity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Industrial applications</topic><topic>Machine learning</topic><topic>Machinery</topic><topic>Maintenance costs</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Roller bearings</topic><topic>Rotating machinery</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaoyang</creatorcontrib><creatorcontrib>Feng, Zhixia</creatorcontrib><creatorcontrib>Lei, Zijian</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaoyang</au><au>Feng, Zhixia</au><au>Lei, Zijian</au><au>Chen, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis</atitle><jtitle>Processes</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><spage>3351</spage><pages>3351-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Efficiently diagnosing bearing faults is of paramount importance to enhance safety and reduce maintenance costs for rotating machinery. This paper introduces a novel bearing fault diagnosis method (LW-BPNN), which combines the rich properties of Legendre multiwavelet bases with the robust learning capabilities of a BP neural network (BPNN). The proposed method not only addresses the limitations of traditional deep networks, which rely on manual feature extraction and expert experience but also eliminates the complexity associated with designing and training deep network architectures. To be specific, only two statistical parameters, root mean square (RMS) and standard deviation (SD), are calculated on different Legendre multiwavelet decomposition levels to thoroughly represent more salient and comprehensive fault characteristics by using several scale and wavelet bases with various regularities. Then, the mapping relation between the extracted features and the health conditions of the bearing is automatically learned by the simpler BPNN classifier rather than the complex deep network structure. Finally, a few experiments on a popular bearing dataset are implemented to verify the effectiveness and robustness of the presented method. The experimental findings illustrate that the proposed method exhibits a high degree of precision in diagnosing various fault patterns. It outperforms other methods in terms of diagnostic accuracy, making it a viable and promising solution for real-world industrial applications in the field of rotating machinery.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11123351</doi><orcidid>https://orcid.org/0000-0002-1719-4169</orcidid><orcidid>https://orcid.org/0000-0002-5047-2175</orcidid><orcidid>https://orcid.org/0000-0003-4409-2114</orcidid><orcidid>https://orcid.org/0000-0002-4193-8826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-12, Vol.11 (12), p.3351
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2904717677
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Analysis
Artificial neural networks
Back propagation networks
Bearings
Complexity
Datasets
Deep learning
Fault diagnosis
Feature extraction
Fourier transforms
Industrial applications
Machine learning
Machinery
Maintenance costs
Methods
Neural networks
Roller bearings
Rotating machinery
Signal processing
Support vector machines
Wavelet transforms
title LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LW-BPNN:%20A%20Novel%20Feature%20Extraction%20Method%20for%20Rolling%20Bearing%20Fault%20Diagnosis&rft.jtitle=Processes&rft.au=Zheng,%20Xiaoyang&rft.date=2023-12-01&rft.volume=11&rft.issue=12&rft.spage=3351&rft.pages=3351-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11123351&rft_dat=%3Cgale_proqu%3EA779284893%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904717677&rft_id=info:pmid/&rft_galeid=A779284893&rfr_iscdi=true