A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation
This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switchin...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.142754-142763 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142763 |
---|---|
container_issue | |
container_start_page | 142754 |
container_title | IEEE access |
container_volume | 11 |
creator | Ko, Hyeon-Joon Koh, Hyun-Gyu Choi, Yeong-Jun |
description | This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switching loss. In addition, distorted current occurs under distorted voltage, which degrades converter performance. However, the proposed method operates with a variable switching frequency because it predicts the inductor current based on a cost function and then controls it. When this method is applied, the switching frequency is reduced near the peak voltage where the current is the highest, so it is facilitated to improve efficiency. In addition, since it detects the frequency of the input voltage and generates a sine wave internally, it is robust against voltage distortion. The proposed method confirmed the facilitation of efficiency improvement compared to the conventional predictive current mode control. To verify the effectiveness of the proposed method, simulation and Hardware-In-the-Loop (HIL) tests are performed using PLECS RT-box. In addition, experiment is conducted by configuring an experimental setup of a 3.3 kW boost PFC converter based on the SiC power module. |
doi_str_mv | 10.1109/ACCESS.2023.3343124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904709464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10360113</ieee_id><doaj_id>oai_doaj_org_article_860d1e79523e44948312e839f0474f71</doaj_id><sourcerecordid>2904709464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7355318e8886db99fb27f31002459e5986bf64acd6052487ba0dc9e3ffc0ef7d3</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUoLDWm-oD0IerYraaRd6eguThNISGjas9BKI1vGXbmSbAj9-a67oWQuMzzeezPMa5qPjC4Zo_rLqu_XT09LTjksAQQwLt40F5y1egES2rev5vfNVSk7OpWaINldNH9W5D553JPHjD66Gk9I-mPOOFbSp7HmtCf3WLfJk5AyWbltxFMcN8SSm7jZknUI0UUc3TOxo5-x72k4ljpiKeRrSqWSx-v-bHbCXDGThwNmW2MaPzTvgt0XvHrpl83P6_WP_mZx9_Dttl_dLRxIXRcdSAlMoVKq9YPWYeBdAEYpF1Kj1KodQius8y2VXKhusNQ7jRCCoxg6D5fN7ezrk92ZQ46_bH42yUbzD0h5Y2yu0e3RqJZ6hp2WHFAILdT0TVSgAxWdCB2bvD7PXoecfh-xVLNLxzxO5xuuJxLVohUTC2aWy6mUjOH_VkbNOTQzh2bOoZmX0CbVp1kVEfGVAlrKGMBfwGuRhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904709464</pqid></control><display><type>article</type><title>A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation</title><source>Electronic Journals Library</source><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><creator>Ko, Hyeon-Joon ; Koh, Hyun-Gyu ; Choi, Yeong-Jun</creator><creatorcontrib>Ko, Hyeon-Joon ; Koh, Hyun-Gyu ; Choi, Yeong-Jun</creatorcontrib><description>This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switching loss. In addition, distorted current occurs under distorted voltage, which degrades converter performance. However, the proposed method operates with a variable switching frequency because it predicts the inductor current based on a cost function and then controls it. When this method is applied, the switching frequency is reduced near the peak voltage where the current is the highest, so it is facilitated to improve efficiency. In addition, since it detects the frequency of the input voltage and generates a sine wave internally, it is robust against voltage distortion. The proposed method confirmed the facilitation of efficiency improvement compared to the conventional predictive current mode control. To verify the effectiveness of the proposed method, simulation and Hardware-In-the-Loop (HIL) tests are performed using PLECS RT-box. In addition, experiment is conducted by configuring an experimental setup of a 3.3 kW boost PFC converter based on the SiC power module.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3343124</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Boost power factor correction (PFC) converter ; Control methods ; Cost function ; Distortion ; Efficiency ; efficiency improvement ; Hardware-in-the-loop simulation ; Inductors ; model predictive current control ; Performance degradation ; Predictive control ; Predictive models ; Robustness ; Sine waves ; Switches ; Switching ; Switching frequency ; Voltage control ; Voltage distortion</subject><ispartof>IEEE access, 2023, Vol.11, p.142754-142763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7355318e8886db99fb27f31002459e5986bf64acd6052487ba0dc9e3ffc0ef7d3</cites><orcidid>0009-0008-9057-1793 ; 0009-0000-6377-2997 ; 0000-0002-7831-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10360113$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ko, Hyeon-Joon</creatorcontrib><creatorcontrib>Koh, Hyun-Gyu</creatorcontrib><creatorcontrib>Choi, Yeong-Jun</creatorcontrib><title>A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switching loss. In addition, distorted current occurs under distorted voltage, which degrades converter performance. However, the proposed method operates with a variable switching frequency because it predicts the inductor current based on a cost function and then controls it. When this method is applied, the switching frequency is reduced near the peak voltage where the current is the highest, so it is facilitated to improve efficiency. In addition, since it detects the frequency of the input voltage and generates a sine wave internally, it is robust against voltage distortion. The proposed method confirmed the facilitation of efficiency improvement compared to the conventional predictive current mode control. To verify the effectiveness of the proposed method, simulation and Hardware-In-the-Loop (HIL) tests are performed using PLECS RT-box. In addition, experiment is conducted by configuring an experimental setup of a 3.3 kW boost PFC converter based on the SiC power module.</description><subject>Boost power factor correction (PFC) converter</subject><subject>Control methods</subject><subject>Cost function</subject><subject>Distortion</subject><subject>Efficiency</subject><subject>efficiency improvement</subject><subject>Hardware-in-the-loop simulation</subject><subject>Inductors</subject><subject>model predictive current control</subject><subject>Performance degradation</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Sine waves</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching frequency</subject><subject>Voltage control</subject><subject>Voltage distortion</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUoLDWm-oD0IerYraaRd6eguThNISGjas9BKI1vGXbmSbAj9-a67oWQuMzzeezPMa5qPjC4Zo_rLqu_XT09LTjksAQQwLt40F5y1egES2rev5vfNVSk7OpWaINldNH9W5D553JPHjD66Gk9I-mPOOFbSp7HmtCf3WLfJk5AyWbltxFMcN8SSm7jZknUI0UUc3TOxo5-x72k4ljpiKeRrSqWSx-v-bHbCXDGThwNmW2MaPzTvgt0XvHrpl83P6_WP_mZx9_Dttl_dLRxIXRcdSAlMoVKq9YPWYeBdAEYpF1Kj1KodQius8y2VXKhusNQ7jRCCoxg6D5fN7ezrk92ZQ46_bH42yUbzD0h5Y2yu0e3RqJZ6hp2WHFAILdT0TVSgAxWdCB2bvD7PXoecfh-xVLNLxzxO5xuuJxLVohUTC2aWy6mUjOH_VkbNOTQzh2bOoZmX0CbVp1kVEfGVAlrKGMBfwGuRhA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ko, Hyeon-Joon</creator><creator>Koh, Hyun-Gyu</creator><creator>Choi, Yeong-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-9057-1793</orcidid><orcidid>https://orcid.org/0009-0000-6377-2997</orcidid><orcidid>https://orcid.org/0000-0002-7831-9877</orcidid></search><sort><creationdate>2023</creationdate><title>A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation</title><author>Ko, Hyeon-Joon ; Koh, Hyun-Gyu ; Choi, Yeong-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7355318e8886db99fb27f31002459e5986bf64acd6052487ba0dc9e3ffc0ef7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boost power factor correction (PFC) converter</topic><topic>Control methods</topic><topic>Cost function</topic><topic>Distortion</topic><topic>Efficiency</topic><topic>efficiency improvement</topic><topic>Hardware-in-the-loop simulation</topic><topic>Inductors</topic><topic>model predictive current control</topic><topic>Performance degradation</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Sine waves</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching frequency</topic><topic>Voltage control</topic><topic>Voltage distortion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Hyeon-Joon</creatorcontrib><creatorcontrib>Koh, Hyun-Gyu</creatorcontrib><creatorcontrib>Choi, Yeong-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Hyeon-Joon</au><au>Koh, Hyun-Gyu</au><au>Choi, Yeong-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>142754</spage><epage>142763</epage><pages>142754-142763</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switching loss. In addition, distorted current occurs under distorted voltage, which degrades converter performance. However, the proposed method operates with a variable switching frequency because it predicts the inductor current based on a cost function and then controls it. When this method is applied, the switching frequency is reduced near the peak voltage where the current is the highest, so it is facilitated to improve efficiency. In addition, since it detects the frequency of the input voltage and generates a sine wave internally, it is robust against voltage distortion. The proposed method confirmed the facilitation of efficiency improvement compared to the conventional predictive current mode control. To verify the effectiveness of the proposed method, simulation and Hardware-In-the-Loop (HIL) tests are performed using PLECS RT-box. In addition, experiment is conducted by configuring an experimental setup of a 3.3 kW boost PFC converter based on the SiC power module.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3343124</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0008-9057-1793</orcidid><orcidid>https://orcid.org/0009-0000-6377-2997</orcidid><orcidid>https://orcid.org/0000-0002-7831-9877</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.142754-142763 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2904709464 |
source | Electronic Journals Library; IEEE Open Access Journals; DOAJ Directory of Open Access Journals |
subjects | Boost power factor correction (PFC) converter Control methods Cost function Distortion Efficiency efficiency improvement Hardware-in-the-loop simulation Inductors model predictive current control Performance degradation Predictive control Predictive models Robustness Sine waves Switches Switching Switching frequency Voltage control Voltage distortion |
title | A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20Predictive%20Current%20Control%20Method%20for%20Achieving%20a%20High%20Efficiency%20and%20High%20Robustness%20Boost%20PFC%20Converter%20Operation&rft.jtitle=IEEE%20access&rft.au=Ko,%20Hyeon-Joon&rft.date=2023&rft.volume=11&rft.spage=142754&rft.epage=142763&rft.pages=142754-142763&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3343124&rft_dat=%3Cproquest_cross%3E2904709464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904709464&rft_id=info:pmid/&rft_ieee_id=10360113&rft_doaj_id=oai_doaj_org_article_860d1e79523e44948312e839f0474f71&rfr_iscdi=true |