A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation

This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switchin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.142754-142763
Hauptverfasser: Ko, Hyeon-Joon, Koh, Hyun-Gyu, Choi, Yeong-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142763
container_issue
container_start_page 142754
container_title IEEE access
container_volume 11
creator Ko, Hyeon-Joon
Koh, Hyun-Gyu
Choi, Yeong-Jun
description This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switching loss. In addition, distorted current occurs under distorted voltage, which degrades converter performance. However, the proposed method operates with a variable switching frequency because it predicts the inductor current based on a cost function and then controls it. When this method is applied, the switching frequency is reduced near the peak voltage where the current is the highest, so it is facilitated to improve efficiency. In addition, since it detects the frequency of the input voltage and generates a sine wave internally, it is robust against voltage distortion. The proposed method confirmed the facilitation of efficiency improvement compared to the conventional predictive current mode control. To verify the effectiveness of the proposed method, simulation and Hardware-In-the-Loop (HIL) tests are performed using PLECS RT-box. In addition, experiment is conducted by configuring an experimental setup of a 3.3 kW boost PFC converter based on the SiC power module.
doi_str_mv 10.1109/ACCESS.2023.3343124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904709464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10360113</ieee_id><doaj_id>oai_doaj_org_article_860d1e79523e44948312e839f0474f71</doaj_id><sourcerecordid>2904709464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7355318e8886db99fb27f31002459e5986bf64acd6052487ba0dc9e3ffc0ef7d3</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUoLDWm-oD0IerYraaRd6eguThNISGjas9BKI1vGXbmSbAj9-a67oWQuMzzeezPMa5qPjC4Zo_rLqu_XT09LTjksAQQwLt40F5y1egES2rev5vfNVSk7OpWaINldNH9W5D553JPHjD66Gk9I-mPOOFbSp7HmtCf3WLfJk5AyWbltxFMcN8SSm7jZknUI0UUc3TOxo5-x72k4ljpiKeRrSqWSx-v-bHbCXDGThwNmW2MaPzTvgt0XvHrpl83P6_WP_mZx9_Dttl_dLRxIXRcdSAlMoVKq9YPWYeBdAEYpF1Kj1KodQius8y2VXKhusNQ7jRCCoxg6D5fN7ezrk92ZQ46_bH42yUbzD0h5Y2yu0e3RqJZ6hp2WHFAILdT0TVSgAxWdCB2bvD7PXoecfh-xVLNLxzxO5xuuJxLVohUTC2aWy6mUjOH_VkbNOTQzh2bOoZmX0CbVp1kVEfGVAlrKGMBfwGuRhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904709464</pqid></control><display><type>article</type><title>A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation</title><source>Electronic Journals Library</source><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><creator>Ko, Hyeon-Joon ; Koh, Hyun-Gyu ; Choi, Yeong-Jun</creator><creatorcontrib>Ko, Hyeon-Joon ; Koh, Hyun-Gyu ; Choi, Yeong-Jun</creatorcontrib><description>This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switching loss. In addition, distorted current occurs under distorted voltage, which degrades converter performance. However, the proposed method operates with a variable switching frequency because it predicts the inductor current based on a cost function and then controls it. When this method is applied, the switching frequency is reduced near the peak voltage where the current is the highest, so it is facilitated to improve efficiency. In addition, since it detects the frequency of the input voltage and generates a sine wave internally, it is robust against voltage distortion. The proposed method confirmed the facilitation of efficiency improvement compared to the conventional predictive current mode control. To verify the effectiveness of the proposed method, simulation and Hardware-In-the-Loop (HIL) tests are performed using PLECS RT-box. In addition, experiment is conducted by configuring an experimental setup of a 3.3 kW boost PFC converter based on the SiC power module.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3343124</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Boost power factor correction (PFC) converter ; Control methods ; Cost function ; Distortion ; Efficiency ; efficiency improvement ; Hardware-in-the-loop simulation ; Inductors ; model predictive current control ; Performance degradation ; Predictive control ; Predictive models ; Robustness ; Sine waves ; Switches ; Switching ; Switching frequency ; Voltage control ; Voltage distortion</subject><ispartof>IEEE access, 2023, Vol.11, p.142754-142763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7355318e8886db99fb27f31002459e5986bf64acd6052487ba0dc9e3ffc0ef7d3</cites><orcidid>0009-0008-9057-1793 ; 0009-0000-6377-2997 ; 0000-0002-7831-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10360113$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ko, Hyeon-Joon</creatorcontrib><creatorcontrib>Koh, Hyun-Gyu</creatorcontrib><creatorcontrib>Choi, Yeong-Jun</creatorcontrib><title>A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switching loss. In addition, distorted current occurs under distorted voltage, which degrades converter performance. However, the proposed method operates with a variable switching frequency because it predicts the inductor current based on a cost function and then controls it. When this method is applied, the switching frequency is reduced near the peak voltage where the current is the highest, so it is facilitated to improve efficiency. In addition, since it detects the frequency of the input voltage and generates a sine wave internally, it is robust against voltage distortion. The proposed method confirmed the facilitation of efficiency improvement compared to the conventional predictive current mode control. To verify the effectiveness of the proposed method, simulation and Hardware-In-the-Loop (HIL) tests are performed using PLECS RT-box. In addition, experiment is conducted by configuring an experimental setup of a 3.3 kW boost PFC converter based on the SiC power module.</description><subject>Boost power factor correction (PFC) converter</subject><subject>Control methods</subject><subject>Cost function</subject><subject>Distortion</subject><subject>Efficiency</subject><subject>efficiency improvement</subject><subject>Hardware-in-the-loop simulation</subject><subject>Inductors</subject><subject>model predictive current control</subject><subject>Performance degradation</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Sine waves</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching frequency</subject><subject>Voltage control</subject><subject>Voltage distortion</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUoLDWm-oD0IerYraaRd6eguThNISGjas9BKI1vGXbmSbAj9-a67oWQuMzzeezPMa5qPjC4Zo_rLqu_XT09LTjksAQQwLt40F5y1egES2rev5vfNVSk7OpWaINldNH9W5D553JPHjD66Gk9I-mPOOFbSp7HmtCf3WLfJk5AyWbltxFMcN8SSm7jZknUI0UUc3TOxo5-x72k4ljpiKeRrSqWSx-v-bHbCXDGThwNmW2MaPzTvgt0XvHrpl83P6_WP_mZx9_Dttl_dLRxIXRcdSAlMoVKq9YPWYeBdAEYpF1Kj1KodQius8y2VXKhusNQ7jRCCoxg6D5fN7ezrk92ZQ46_bH42yUbzD0h5Y2yu0e3RqJZ6hp2WHFAILdT0TVSgAxWdCB2bvD7PXoecfh-xVLNLxzxO5xuuJxLVohUTC2aWy6mUjOH_VkbNOTQzh2bOoZmX0CbVp1kVEfGVAlrKGMBfwGuRhA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ko, Hyeon-Joon</creator><creator>Koh, Hyun-Gyu</creator><creator>Choi, Yeong-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-9057-1793</orcidid><orcidid>https://orcid.org/0009-0000-6377-2997</orcidid><orcidid>https://orcid.org/0000-0002-7831-9877</orcidid></search><sort><creationdate>2023</creationdate><title>A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation</title><author>Ko, Hyeon-Joon ; Koh, Hyun-Gyu ; Choi, Yeong-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7355318e8886db99fb27f31002459e5986bf64acd6052487ba0dc9e3ffc0ef7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boost power factor correction (PFC) converter</topic><topic>Control methods</topic><topic>Cost function</topic><topic>Distortion</topic><topic>Efficiency</topic><topic>efficiency improvement</topic><topic>Hardware-in-the-loop simulation</topic><topic>Inductors</topic><topic>model predictive current control</topic><topic>Performance degradation</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Sine waves</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching frequency</topic><topic>Voltage control</topic><topic>Voltage distortion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Hyeon-Joon</creatorcontrib><creatorcontrib>Koh, Hyun-Gyu</creatorcontrib><creatorcontrib>Choi, Yeong-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Hyeon-Joon</au><au>Koh, Hyun-Gyu</au><au>Choi, Yeong-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>142754</spage><epage>142763</epage><pages>142754-142763</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a boost PFC converter based on model predictive current control to achieve both improved efficiency and robustness against voltage distortion. The control method of the conventional boost PFC converter adopts a fixed switching frequency, so it is limited in improving the switching loss. In addition, distorted current occurs under distorted voltage, which degrades converter performance. However, the proposed method operates with a variable switching frequency because it predicts the inductor current based on a cost function and then controls it. When this method is applied, the switching frequency is reduced near the peak voltage where the current is the highest, so it is facilitated to improve efficiency. In addition, since it detects the frequency of the input voltage and generates a sine wave internally, it is robust against voltage distortion. The proposed method confirmed the facilitation of efficiency improvement compared to the conventional predictive current mode control. To verify the effectiveness of the proposed method, simulation and Hardware-In-the-Loop (HIL) tests are performed using PLECS RT-box. In addition, experiment is conducted by configuring an experimental setup of a 3.3 kW boost PFC converter based on the SiC power module.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3343124</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0008-9057-1793</orcidid><orcidid>https://orcid.org/0009-0000-6377-2997</orcidid><orcidid>https://orcid.org/0000-0002-7831-9877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.142754-142763
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2904709464
source Electronic Journals Library; IEEE Open Access Journals; DOAJ Directory of Open Access Journals
subjects Boost power factor correction (PFC) converter
Control methods
Cost function
Distortion
Efficiency
efficiency improvement
Hardware-in-the-loop simulation
Inductors
model predictive current control
Performance degradation
Predictive control
Predictive models
Robustness
Sine waves
Switches
Switching
Switching frequency
Voltage control
Voltage distortion
title A Model Predictive Current Control Method for Achieving a High Efficiency and High Robustness Boost PFC Converter Operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20Predictive%20Current%20Control%20Method%20for%20Achieving%20a%20High%20Efficiency%20and%20High%20Robustness%20Boost%20PFC%20Converter%20Operation&rft.jtitle=IEEE%20access&rft.au=Ko,%20Hyeon-Joon&rft.date=2023&rft.volume=11&rft.spage=142754&rft.epage=142763&rft.pages=142754-142763&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3343124&rft_dat=%3Cproquest_cross%3E2904709464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904709464&rft_id=info:pmid/&rft_ieee_id=10360113&rft_doaj_id=oai_doaj_org_article_860d1e79523e44948312e839f0474f71&rfr_iscdi=true