Design and Implementation of Dual-Mode Support Vector Machine (SVM) Trainer and Classifier Chip Architecture for Human Disease Detection Applications

This paper proposes a low-latency dual-mode support vector machine (SVM) chip hardware architecture for human disease detection applications. It can simultaneously support the on-line SVM trainer and classifier both for linear and non-linear operating modes. In addition to the proposed hardware arch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2023-12, Vol.70 (12), p.5302-5315
Hauptverfasser: Shih, Xin-Yu, Wu, Hsiang-En, Cai, Ming-Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5315
container_issue 12
container_start_page 5302
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 70
creator Shih, Xin-Yu
Wu, Hsiang-En
Cai, Ming-Xian
description This paper proposes a low-latency dual-mode support vector machine (SVM) chip hardware architecture for human disease detection applications. It can simultaneously support the on-line SVM trainer and classifier both for linear and non-linear operating modes. In addition to the proposed hardware architecture, we also develop three effective design techniques, such as Queue-based Fast Selection (QFS), Dual-mode Linear and Non-linear Kernel (DLNK), and Low-latency Lagrange-multiplier-value Updater (LLU). For the ASIC implementation, our developed work with TSMC 40-nm multi-Vt CMOS technology only occupies a total core area of 0.249 mm2 in chip layout. After system validation with seven representative datasets, the operating frequency of our chip is up to 452 MHz. For linear and non-linear modes, the according power dissipates 54.2 mW and 71.4 mW, respectively. While manipulating 1024 training data for linear and non-linear modes, the worst-case training latency is only 1.8 ms and 99.0 ms, respectively. In addition, under the superior accuracy, true positive rate (TPR), and true negative rate (TNR) performance, the classification throughput for linear and non-linear modes is 2.42 GBps and 4.74 MBps, respectively.
doi_str_mv 10.1109/TCSI.2023.3313133
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2904614060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10252133</ieee_id><sourcerecordid>2904614060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-86365ca68769aba3a840dd1b635d396a8df67064168966da86049d8afa1546843</originalsourceid><addsrcrecordid>eNpNkL9OwzAQxiMEEqXwAEgMllhgSLFj5-qMVQK0UiuGlq7RNXGoq_zDTgYehPfFaTugG-5O9333ST_Pu2d0whiNXjbxejEJaMAnnDNX_MIbsTCUPpUULodZRL7kgbz2bqw9UBpElLOR95soq79qgnVOFlVbqkrVHXa6qUlTkKTH0l81uSLrvm0b05GtyrrGkBVme10r8rTerp7JxqBbzPFJXKK1utBujfe6JTPjlJ1z9UaRwlnnfYU1SbRVaBVJ1HAb4mZtW-rsGG1vvasCS6vuzn3sfb69buK5v_x4X8SzpZ8FAjpfAocwQ5BTiHCHHKWgec52wMOcR4AyL2BKQTCQEUCOEqiIcokFOhwgBR97j6e_rWm-e2W79ND0pnaRqeMjgAkK1KnYSZWZxlqjirQ1ukLzkzKaDvTTgX460E_P9J3n4eTRSql_-iAMhvMf4ZeBDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904614060</pqid></control><display><type>article</type><title>Design and Implementation of Dual-Mode Support Vector Machine (SVM) Trainer and Classifier Chip Architecture for Human Disease Detection Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Shih, Xin-Yu ; Wu, Hsiang-En ; Cai, Ming-Xian</creator><creatorcontrib>Shih, Xin-Yu ; Wu, Hsiang-En ; Cai, Ming-Xian</creatorcontrib><description>This paper proposes a low-latency dual-mode support vector machine (SVM) chip hardware architecture for human disease detection applications. It can simultaneously support the on-line SVM trainer and classifier both for linear and non-linear operating modes. In addition to the proposed hardware architecture, we also develop three effective design techniques, such as Queue-based Fast Selection (QFS), Dual-mode Linear and Non-linear Kernel (DLNK), and Low-latency Lagrange-multiplier-value Updater (LLU). For the ASIC implementation, our developed work with TSMC 40-nm multi-Vt CMOS technology only occupies a total core area of 0.249 mm2 in chip layout. After system validation with seven representative datasets, the operating frequency of our chip is up to 452 MHz. For linear and non-linear modes, the according power dissipates 54.2 mW and 71.4 mW, respectively. While manipulating 1024 training data for linear and non-linear modes, the worst-case training latency is only 1.8 ms and 99.0 ms, respectively. In addition, under the superior accuracy, true positive rate (TPR), and true negative rate (TNR) performance, the classification throughput for linear and non-linear modes is 2.42 GBps and 4.74 MBps, respectively.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2023.3313133</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>accuracy ; chip architecture ; classification ; Classifiers ; dual-mode ; Hardware ; low latency ; non-linear ; Online services ; online training ; Optimization ; Support vector machine ; Support vector machines ; Training ; Training data</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2023-12, Vol.70 (12), p.5302-5315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-86365ca68769aba3a840dd1b635d396a8df67064168966da86049d8afa1546843</cites><orcidid>0009-0003-8213-0502 ; 0000-0002-9045-5847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10252133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10252133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shih, Xin-Yu</creatorcontrib><creatorcontrib>Wu, Hsiang-En</creatorcontrib><creatorcontrib>Cai, Ming-Xian</creatorcontrib><title>Design and Implementation of Dual-Mode Support Vector Machine (SVM) Trainer and Classifier Chip Architecture for Human Disease Detection Applications</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper proposes a low-latency dual-mode support vector machine (SVM) chip hardware architecture for human disease detection applications. It can simultaneously support the on-line SVM trainer and classifier both for linear and non-linear operating modes. In addition to the proposed hardware architecture, we also develop three effective design techniques, such as Queue-based Fast Selection (QFS), Dual-mode Linear and Non-linear Kernel (DLNK), and Low-latency Lagrange-multiplier-value Updater (LLU). For the ASIC implementation, our developed work with TSMC 40-nm multi-Vt CMOS technology only occupies a total core area of 0.249 mm2 in chip layout. After system validation with seven representative datasets, the operating frequency of our chip is up to 452 MHz. For linear and non-linear modes, the according power dissipates 54.2 mW and 71.4 mW, respectively. While manipulating 1024 training data for linear and non-linear modes, the worst-case training latency is only 1.8 ms and 99.0 ms, respectively. In addition, under the superior accuracy, true positive rate (TPR), and true negative rate (TNR) performance, the classification throughput for linear and non-linear modes is 2.42 GBps and 4.74 MBps, respectively.</description><subject>accuracy</subject><subject>chip architecture</subject><subject>classification</subject><subject>Classifiers</subject><subject>dual-mode</subject><subject>Hardware</subject><subject>low latency</subject><subject>non-linear</subject><subject>Online services</subject><subject>online training</subject><subject>Optimization</subject><subject>Support vector machine</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Training data</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL9OwzAQxiMEEqXwAEgMllhgSLFj5-qMVQK0UiuGlq7RNXGoq_zDTgYehPfFaTugG-5O9333ST_Pu2d0whiNXjbxejEJaMAnnDNX_MIbsTCUPpUULodZRL7kgbz2bqw9UBpElLOR95soq79qgnVOFlVbqkrVHXa6qUlTkKTH0l81uSLrvm0b05GtyrrGkBVme10r8rTerp7JxqBbzPFJXKK1utBujfe6JTPjlJ1z9UaRwlnnfYU1SbRVaBVJ1HAb4mZtW-rsGG1vvasCS6vuzn3sfb69buK5v_x4X8SzpZ8FAjpfAocwQ5BTiHCHHKWgec52wMOcR4AyL2BKQTCQEUCOEqiIcokFOhwgBR97j6e_rWm-e2W79ND0pnaRqeMjgAkK1KnYSZWZxlqjirQ1ukLzkzKaDvTTgX460E_P9J3n4eTRSql_-iAMhvMf4ZeBDQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Shih, Xin-Yu</creator><creator>Wu, Hsiang-En</creator><creator>Cai, Ming-Xian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-8213-0502</orcidid><orcidid>https://orcid.org/0000-0002-9045-5847</orcidid></search><sort><creationdate>20231201</creationdate><title>Design and Implementation of Dual-Mode Support Vector Machine (SVM) Trainer and Classifier Chip Architecture for Human Disease Detection Applications</title><author>Shih, Xin-Yu ; Wu, Hsiang-En ; Cai, Ming-Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-86365ca68769aba3a840dd1b635d396a8df67064168966da86049d8afa1546843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>accuracy</topic><topic>chip architecture</topic><topic>classification</topic><topic>Classifiers</topic><topic>dual-mode</topic><topic>Hardware</topic><topic>low latency</topic><topic>non-linear</topic><topic>Online services</topic><topic>online training</topic><topic>Optimization</topic><topic>Support vector machine</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shih, Xin-Yu</creatorcontrib><creatorcontrib>Wu, Hsiang-En</creatorcontrib><creatorcontrib>Cai, Ming-Xian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shih, Xin-Yu</au><au>Wu, Hsiang-En</au><au>Cai, Ming-Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of Dual-Mode Support Vector Machine (SVM) Trainer and Classifier Chip Architecture for Human Disease Detection Applications</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>70</volume><issue>12</issue><spage>5302</spage><epage>5315</epage><pages>5302-5315</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This paper proposes a low-latency dual-mode support vector machine (SVM) chip hardware architecture for human disease detection applications. It can simultaneously support the on-line SVM trainer and classifier both for linear and non-linear operating modes. In addition to the proposed hardware architecture, we also develop three effective design techniques, such as Queue-based Fast Selection (QFS), Dual-mode Linear and Non-linear Kernel (DLNK), and Low-latency Lagrange-multiplier-value Updater (LLU). For the ASIC implementation, our developed work with TSMC 40-nm multi-Vt CMOS technology only occupies a total core area of 0.249 mm2 in chip layout. After system validation with seven representative datasets, the operating frequency of our chip is up to 452 MHz. For linear and non-linear modes, the according power dissipates 54.2 mW and 71.4 mW, respectively. While manipulating 1024 training data for linear and non-linear modes, the worst-case training latency is only 1.8 ms and 99.0 ms, respectively. In addition, under the superior accuracy, true positive rate (TPR), and true negative rate (TNR) performance, the classification throughput for linear and non-linear modes is 2.42 GBps and 4.74 MBps, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2023.3313133</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0003-8213-0502</orcidid><orcidid>https://orcid.org/0000-0002-9045-5847</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2023-12, Vol.70 (12), p.5302-5315
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_journals_2904614060
source IEEE Electronic Library (IEL)
subjects accuracy
chip architecture
classification
Classifiers
dual-mode
Hardware
low latency
non-linear
Online services
online training
Optimization
Support vector machine
Support vector machines
Training
Training data
title Design and Implementation of Dual-Mode Support Vector Machine (SVM) Trainer and Classifier Chip Architecture for Human Disease Detection Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20Dual-Mode%20Support%20Vector%20Machine%20(SVM)%20Trainer%20and%20Classifier%20Chip%20Architecture%20for%20Human%20Disease%20Detection%20Applications&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Shih,%20Xin-Yu&rft.date=2023-12-01&rft.volume=70&rft.issue=12&rft.spage=5302&rft.epage=5315&rft.pages=5302-5315&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2023.3313133&rft_dat=%3Cproquest_RIE%3E2904614060%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904614060&rft_id=info:pmid/&rft_ieee_id=10252133&rfr_iscdi=true