Impact of melting and radiation on MHD mixed convective heat transfer slip flow through vertical porous embedded micro-channel

This study evaluates the melting and slip effect on mixed convective heat transfer through porous micro channel having electrical conducting and non-conducting walls. The flow mechanics of the fluid injection and ejection through the micro channel under the transverse magnetic field is developed usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2023-11, Vol.30 (11), p.3670-3681
Hauptverfasser: Akinshilo, A. T., Ilegbusi, A. O., Ali, H. M., Sanusi, M., Sobamowo, M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3681
container_issue 11
container_start_page 3670
container_title Journal of Central South University
container_volume 30
creator Akinshilo, A. T.
Ilegbusi, A. O.
Ali, H. M.
Sanusi, M.
Sobamowo, M. G.
description This study evaluates the melting and slip effect on mixed convective heat transfer through porous micro channel having electrical conducting and non-conducting walls. The flow mechanics of the fluid injection and ejection through the micro channel under the transverse magnetic field is developed using nonlinear coupled model of higher order ordinary differentials. These are non-sensationalized with the aid of similarity transforms. The model governing the mechanics of thermal fluid transport is analyzed using the Homotopy perturbation method of analytical solution, which is validated for simple conditions using existing literatures that show satisfactory results. The effect of rheological parameters of heat transfer during fluid transport is presented in the bid to enhance system operations lowering energy utilization consequently minimizing cost. Obtained results reveal that combined effect of melt and radiation on the thermal boundary layer steadily lowers its thickness. Also rise in radiation parameter ( R ) ranging in 1 < R < 5 reveals thermal profile decreases from −0.4804 to −1.3081 at the mid plate of the micro channel. The study provides useful insight in engineering science applications including magneto hydrodynamics molten metal and molten salt pumps among other practical, yet useful applications.
doi_str_mv 10.1007/s11771-023-5400-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904607419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904607419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a5e212f49e0d79ccfe025253a09bcff64d9a7fcf1f14c6b977168cae96496a23</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxRdRsNR-AG8Bz9Eku5ttjlL_tFDx0nvIZidtZDdZk7Tai5_dSAVPwsAMw3tvhl9RXFNySwlp7iKlTUMxYSWuK0Lw8ayYMMYaXDNWnueZiBqzuRCXxSxG25KSMl5ywSfF12oYlU7IGzRAn6zbIuU6FFRnVbLeoVwvywc02E_okPbuADrZA6AdqIRSUC4aCCj2dkSm9x8o7YLfb3foACFZrXo0-ryICIYWui5nDFYHj_VOOQf9VXFhVB9h9tunxebpcbNY4vXr82pxv8a6pDxhVQOjzFQCSNcIrQ0QVrO6VES02hhedUI1RhtqaKV5KzINPtcKBK8EV6ycFjen2DH49z3EJN_8Prh8UTJBKk6aioqsoidVfjDGAEaOwQ4qHCUl8ge0PIGWGbT8AS2P2cNOnpi1bgvhL_l_0zcrFoNH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904607419</pqid></control><display><type>article</type><title>Impact of melting and radiation on MHD mixed convective heat transfer slip flow through vertical porous embedded micro-channel</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Akinshilo, A. T. ; Ilegbusi, A. O. ; Ali, H. M. ; Sanusi, M. ; Sobamowo, M. G.</creator><creatorcontrib>Akinshilo, A. T. ; Ilegbusi, A. O. ; Ali, H. M. ; Sanusi, M. ; Sobamowo, M. G.</creatorcontrib><description>This study evaluates the melting and slip effect on mixed convective heat transfer through porous micro channel having electrical conducting and non-conducting walls. The flow mechanics of the fluid injection and ejection through the micro channel under the transverse magnetic field is developed using nonlinear coupled model of higher order ordinary differentials. These are non-sensationalized with the aid of similarity transforms. The model governing the mechanics of thermal fluid transport is analyzed using the Homotopy perturbation method of analytical solution, which is validated for simple conditions using existing literatures that show satisfactory results. The effect of rheological parameters of heat transfer during fluid transport is presented in the bid to enhance system operations lowering energy utilization consequently minimizing cost. Obtained results reveal that combined effect of melt and radiation on the thermal boundary layer steadily lowers its thickness. Also rise in radiation parameter ( R ) ranging in 1 &lt; R &lt; 5 reveals thermal profile decreases from −0.4804 to −1.3081 at the mid plate of the micro channel. The study provides useful insight in engineering science applications including magneto hydrodynamics molten metal and molten salt pumps among other practical, yet useful applications.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-023-5400-y</identifier><language>eng</language><publisher>Changsha: Central South University</publisher><subject>Convective heat transfer ; Energy utilization ; Engineering ; Exact solutions ; Fluid injection ; Heat transfer ; Heat transmission ; Liquid metals ; Magnetohydrodynamics ; Mathematical models ; Mechanics (physics) ; Metallic Materials ; Microchannels ; Molten salts ; Parameters ; Perturbation methods ; Radiation ; Rheological properties ; Slip flow ; Thermal boundary layer ; Thickness</subject><ispartof>Journal of Central South University, 2023-11, Vol.30 (11), p.3670-3681</ispartof><rights>Central South University 2023</rights><rights>Central South University 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a5e212f49e0d79ccfe025253a09bcff64d9a7fcf1f14c6b977168cae96496a23</citedby><cites>FETCH-LOGICAL-c316t-a5e212f49e0d79ccfe025253a09bcff64d9a7fcf1f14c6b977168cae96496a23</cites><orcidid>0000-0001-9266-408X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-023-5400-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-023-5400-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Akinshilo, A. T.</creatorcontrib><creatorcontrib>Ilegbusi, A. O.</creatorcontrib><creatorcontrib>Ali, H. M.</creatorcontrib><creatorcontrib>Sanusi, M.</creatorcontrib><creatorcontrib>Sobamowo, M. G.</creatorcontrib><title>Impact of melting and radiation on MHD mixed convective heat transfer slip flow through vertical porous embedded micro-channel</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><description>This study evaluates the melting and slip effect on mixed convective heat transfer through porous micro channel having electrical conducting and non-conducting walls. The flow mechanics of the fluid injection and ejection through the micro channel under the transverse magnetic field is developed using nonlinear coupled model of higher order ordinary differentials. These are non-sensationalized with the aid of similarity transforms. The model governing the mechanics of thermal fluid transport is analyzed using the Homotopy perturbation method of analytical solution, which is validated for simple conditions using existing literatures that show satisfactory results. The effect of rheological parameters of heat transfer during fluid transport is presented in the bid to enhance system operations lowering energy utilization consequently minimizing cost. Obtained results reveal that combined effect of melt and radiation on the thermal boundary layer steadily lowers its thickness. Also rise in radiation parameter ( R ) ranging in 1 &lt; R &lt; 5 reveals thermal profile decreases from −0.4804 to −1.3081 at the mid plate of the micro channel. The study provides useful insight in engineering science applications including magneto hydrodynamics molten metal and molten salt pumps among other practical, yet useful applications.</description><subject>Convective heat transfer</subject><subject>Energy utilization</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Fluid injection</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Liquid metals</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Mechanics (physics)</subject><subject>Metallic Materials</subject><subject>Microchannels</subject><subject>Molten salts</subject><subject>Parameters</subject><subject>Perturbation methods</subject><subject>Radiation</subject><subject>Rheological properties</subject><subject>Slip flow</subject><subject>Thermal boundary layer</subject><subject>Thickness</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxRdRsNR-AG8Bz9Eku5ttjlL_tFDx0nvIZidtZDdZk7Tai5_dSAVPwsAMw3tvhl9RXFNySwlp7iKlTUMxYSWuK0Lw8ayYMMYaXDNWnueZiBqzuRCXxSxG25KSMl5ywSfF12oYlU7IGzRAn6zbIuU6FFRnVbLeoVwvywc02E_okPbuADrZA6AdqIRSUC4aCCj2dkSm9x8o7YLfb3foACFZrXo0-ryICIYWui5nDFYHj_VOOQf9VXFhVB9h9tunxebpcbNY4vXr82pxv8a6pDxhVQOjzFQCSNcIrQ0QVrO6VES02hhedUI1RhtqaKV5KzINPtcKBK8EV6ycFjen2DH49z3EJN_8Prh8UTJBKk6aioqsoidVfjDGAEaOwQ4qHCUl8ge0PIGWGbT8AS2P2cNOnpi1bgvhL_l_0zcrFoNH</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Akinshilo, A. T.</creator><creator>Ilegbusi, A. O.</creator><creator>Ali, H. M.</creator><creator>Sanusi, M.</creator><creator>Sobamowo, M. G.</creator><general>Central South University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9266-408X</orcidid></search><sort><creationdate>20231101</creationdate><title>Impact of melting and radiation on MHD mixed convective heat transfer slip flow through vertical porous embedded micro-channel</title><author>Akinshilo, A. T. ; Ilegbusi, A. O. ; Ali, H. M. ; Sanusi, M. ; Sobamowo, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a5e212f49e0d79ccfe025253a09bcff64d9a7fcf1f14c6b977168cae96496a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convective heat transfer</topic><topic>Energy utilization</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Fluid injection</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Liquid metals</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Mechanics (physics)</topic><topic>Metallic Materials</topic><topic>Microchannels</topic><topic>Molten salts</topic><topic>Parameters</topic><topic>Perturbation methods</topic><topic>Radiation</topic><topic>Rheological properties</topic><topic>Slip flow</topic><topic>Thermal boundary layer</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akinshilo, A. T.</creatorcontrib><creatorcontrib>Ilegbusi, A. O.</creatorcontrib><creatorcontrib>Ali, H. M.</creatorcontrib><creatorcontrib>Sanusi, M.</creatorcontrib><creatorcontrib>Sobamowo, M. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akinshilo, A. T.</au><au>Ilegbusi, A. O.</au><au>Ali, H. M.</au><au>Sanusi, M.</au><au>Sobamowo, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of melting and radiation on MHD mixed convective heat transfer slip flow through vertical porous embedded micro-channel</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>30</volume><issue>11</issue><spage>3670</spage><epage>3681</epage><pages>3670-3681</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>This study evaluates the melting and slip effect on mixed convective heat transfer through porous micro channel having electrical conducting and non-conducting walls. The flow mechanics of the fluid injection and ejection through the micro channel under the transverse magnetic field is developed using nonlinear coupled model of higher order ordinary differentials. These are non-sensationalized with the aid of similarity transforms. The model governing the mechanics of thermal fluid transport is analyzed using the Homotopy perturbation method of analytical solution, which is validated for simple conditions using existing literatures that show satisfactory results. The effect of rheological parameters of heat transfer during fluid transport is presented in the bid to enhance system operations lowering energy utilization consequently minimizing cost. Obtained results reveal that combined effect of melt and radiation on the thermal boundary layer steadily lowers its thickness. Also rise in radiation parameter ( R ) ranging in 1 &lt; R &lt; 5 reveals thermal profile decreases from −0.4804 to −1.3081 at the mid plate of the micro channel. The study provides useful insight in engineering science applications including magneto hydrodynamics molten metal and molten salt pumps among other practical, yet useful applications.</abstract><cop>Changsha</cop><pub>Central South University</pub><doi>10.1007/s11771-023-5400-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9266-408X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-2899
ispartof Journal of Central South University, 2023-11, Vol.30 (11), p.3670-3681
issn 2095-2899
2227-5223
language eng
recordid cdi_proquest_journals_2904607419
source SpringerLink Journals; Alma/SFX Local Collection
subjects Convective heat transfer
Energy utilization
Engineering
Exact solutions
Fluid injection
Heat transfer
Heat transmission
Liquid metals
Magnetohydrodynamics
Mathematical models
Mechanics (physics)
Metallic Materials
Microchannels
Molten salts
Parameters
Perturbation methods
Radiation
Rheological properties
Slip flow
Thermal boundary layer
Thickness
title Impact of melting and radiation on MHD mixed convective heat transfer slip flow through vertical porous embedded micro-channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20melting%20and%20radiation%20on%20MHD%20mixed%20convective%20heat%20transfer%20slip%20flow%20through%20vertical%20porous%20embedded%20micro-channel&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=Akinshilo,%20A.%20T.&rft.date=2023-11-01&rft.volume=30&rft.issue=11&rft.spage=3670&rft.epage=3681&rft.pages=3670-3681&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-023-5400-y&rft_dat=%3Cproquest_cross%3E2904607419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904607419&rft_id=info:pmid/&rfr_iscdi=true