Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs

This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-02, Vol.9 (2), p.1019-1026
Hauptverfasser: Aspragkathos, Sotirios N., Karras, George C., Kyriakopoulos, Kostas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1026
container_issue 2
container_start_page 1019
container_title IEEE robotics and automation letters
container_volume 9
creator Aspragkathos, Sotirios N.
Karras, George C.
Kyriakopoulos, Kostas J.
description This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour model allows adaptation to the evolving target's shape, while the proposed event-triggered scheme achieves improved computational efficiency and extended flight duration while generating new control sequences for the UAV. Real-world experimental validation as well as a comparative simulation performance analysis validate the scheme, showcasing its robustness in handling complex scenarios. This approach holds promise for various applications, such as surveillance and autonomous navigation.
doi_str_mv 10.1109/LRA.2023.3339064
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2904605885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10339846</ieee_id><sourcerecordid>2904605885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-52150003803b1ba4a6d8400d4fdc7a84a67966be02a072ed0dca65f2a13e6fcd3</originalsourceid><addsrcrecordid>eNpNULFuwjAQtapWKqLsHTpY6hx6tmMnGRGCgkTVqoIOXSyTXKJQiKkdIvXv6wgGpnv37r270yPkkcGYMcheVp-TMQcuxkKIDFR8QwZcJEkkEqVur_A9GXm_AwAmeSIyOSDfsw6bNlq7uqrQYUGXB1MhfbOHQHv6Eag6b-sO6dQ2rbN7WlpH187kP3VT0Vln910P5mjak0NPN75vN5Mv_0DuSrP3OLrUIdnMZ-vpIlq9vy6nk1WU84y3keRMho9ECmLLtiY2qkhjgCIuizwxaeiTTKktAjeQcCygyI2SJTdMoCrzQgzJ83nv0dnfE_pW7-zJNeGk5hnECmSayqCCsyp31nuHpT66-mDcn2ag-xB1CFH3IepLiMHydLbUiHglD-M0VuIfKO9tCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904605885</pqid></control><display><type>article</type><title>Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs</title><source>IEEE Xplore</source><creator>Aspragkathos, Sotirios N. ; Karras, George C. ; Kyriakopoulos, Kostas J.</creator><creatorcontrib>Aspragkathos, Sotirios N. ; Karras, George C. ; Kyriakopoulos, Kostas J.</creatorcontrib><description>This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour model allows adaptation to the evolving target's shape, while the proposed event-triggered scheme achieves improved computational efficiency and extended flight duration while generating new control sequences for the UAV. Real-world experimental validation as well as a comparative simulation performance analysis validate the scheme, showcasing its robustness in handling complex scenarios. This approach holds promise for various applications, such as surveillance and autonomous navigation.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3339064</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>aerial systems: Perception and autonomy ; Autonomous aerial vehicles ; autonomous agents ; Autonomous navigation ; Contours ; Deformation ; Evolution ; Formability ; Nonlinear control ; Predictive control ; Robots ; Shape ; Surveillance ; Target tracking ; Tracking control ; Unmanned aerial vehicles ; Vehicle dynamics ; Visual servoing ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2024-02, Vol.9 (2), p.1019-1026</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-52150003803b1ba4a6d8400d4fdc7a84a67966be02a072ed0dca65f2a13e6fcd3</citedby><cites>FETCH-LOGICAL-c292t-52150003803b1ba4a6d8400d4fdc7a84a67966be02a072ed0dca65f2a13e6fcd3</cites><orcidid>0000-0002-2309-4498 ; 0000-0002-1229-3029 ; 0000-0002-4045-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10339846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10339846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aspragkathos, Sotirios N.</creatorcontrib><creatorcontrib>Karras, George C.</creatorcontrib><creatorcontrib>Kyriakopoulos, Kostas J.</creatorcontrib><title>Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour model allows adaptation to the evolving target's shape, while the proposed event-triggered scheme achieves improved computational efficiency and extended flight duration while generating new control sequences for the UAV. Real-world experimental validation as well as a comparative simulation performance analysis validate the scheme, showcasing its robustness in handling complex scenarios. This approach holds promise for various applications, such as surveillance and autonomous navigation.</description><subject>aerial systems: Perception and autonomy</subject><subject>Autonomous aerial vehicles</subject><subject>autonomous agents</subject><subject>Autonomous navigation</subject><subject>Contours</subject><subject>Deformation</subject><subject>Evolution</subject><subject>Formability</subject><subject>Nonlinear control</subject><subject>Predictive control</subject><subject>Robots</subject><subject>Shape</subject><subject>Surveillance</subject><subject>Target tracking</subject><subject>Tracking control</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicle dynamics</subject><subject>Visual servoing</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNULFuwjAQtapWKqLsHTpY6hx6tmMnGRGCgkTVqoIOXSyTXKJQiKkdIvXv6wgGpnv37r270yPkkcGYMcheVp-TMQcuxkKIDFR8QwZcJEkkEqVur_A9GXm_AwAmeSIyOSDfsw6bNlq7uqrQYUGXB1MhfbOHQHv6Eag6b-sO6dQ2rbN7WlpH187kP3VT0Vln910P5mjak0NPN75vN5Mv_0DuSrP3OLrUIdnMZ-vpIlq9vy6nk1WU84y3keRMho9ECmLLtiY2qkhjgCIuizwxaeiTTKktAjeQcCygyI2SJTdMoCrzQgzJ83nv0dnfE_pW7-zJNeGk5hnECmSayqCCsyp31nuHpT66-mDcn2ag-xB1CFH3IepLiMHydLbUiHglD-M0VuIfKO9tCQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Aspragkathos, Sotirios N.</creator><creator>Karras, George C.</creator><creator>Kyriakopoulos, Kostas J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2309-4498</orcidid><orcidid>https://orcid.org/0000-0002-1229-3029</orcidid><orcidid>https://orcid.org/0000-0002-4045-4715</orcidid></search><sort><creationdate>20240201</creationdate><title>Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs</title><author>Aspragkathos, Sotirios N. ; Karras, George C. ; Kyriakopoulos, Kostas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-52150003803b1ba4a6d8400d4fdc7a84a67966be02a072ed0dca65f2a13e6fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aerial systems: Perception and autonomy</topic><topic>Autonomous aerial vehicles</topic><topic>autonomous agents</topic><topic>Autonomous navigation</topic><topic>Contours</topic><topic>Deformation</topic><topic>Evolution</topic><topic>Formability</topic><topic>Nonlinear control</topic><topic>Predictive control</topic><topic>Robots</topic><topic>Shape</topic><topic>Surveillance</topic><topic>Target tracking</topic><topic>Tracking control</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicle dynamics</topic><topic>Visual servoing</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aspragkathos, Sotirios N.</creatorcontrib><creatorcontrib>Karras, George C.</creatorcontrib><creatorcontrib>Kyriakopoulos, Kostas J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aspragkathos, Sotirios N.</au><au>Karras, George C.</au><au>Kyriakopoulos, Kostas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>9</volume><issue>2</issue><spage>1019</spage><epage>1026</epage><pages>1019-1026</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour model allows adaptation to the evolving target's shape, while the proposed event-triggered scheme achieves improved computational efficiency and extended flight duration while generating new control sequences for the UAV. Real-world experimental validation as well as a comparative simulation performance analysis validate the scheme, showcasing its robustness in handling complex scenarios. This approach holds promise for various applications, such as surveillance and autonomous navigation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3339064</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2309-4498</orcidid><orcidid>https://orcid.org/0000-0002-1229-3029</orcidid><orcidid>https://orcid.org/0000-0002-4045-4715</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-02, Vol.9 (2), p.1019-1026
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2904605885
source IEEE Xplore
subjects aerial systems: Perception and autonomy
Autonomous aerial vehicles
autonomous agents
Autonomous navigation
Contours
Deformation
Evolution
Formability
Nonlinear control
Predictive control
Robots
Shape
Surveillance
Target tracking
Tracking control
Unmanned aerial vehicles
Vehicle dynamics
Visual servoing
Visualization
title Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Triggered%20Image%20Moments%20Predictive%20Control%20for%20Tracking%20Evolving%20Features%20Using%20UAVs&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Aspragkathos,%20Sotirios%20N.&rft.date=2024-02-01&rft.volume=9&rft.issue=2&rft.spage=1019&rft.epage=1026&rft.pages=1019-1026&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3339064&rft_dat=%3Cproquest_RIE%3E2904605885%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904605885&rft_id=info:pmid/&rft_ieee_id=10339846&rfr_iscdi=true