Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs
This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour mod...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-02, Vol.9 (2), p.1019-1026 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1026 |
---|---|
container_issue | 2 |
container_start_page | 1019 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Aspragkathos, Sotirios N. Karras, George C. Kyriakopoulos, Kostas J. |
description | This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour model allows adaptation to the evolving target's shape, while the proposed event-triggered scheme achieves improved computational efficiency and extended flight duration while generating new control sequences for the UAV. Real-world experimental validation as well as a comparative simulation performance analysis validate the scheme, showcasing its robustness in handling complex scenarios. This approach holds promise for various applications, such as surveillance and autonomous navigation. |
doi_str_mv | 10.1109/LRA.2023.3339064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2904605885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10339846</ieee_id><sourcerecordid>2904605885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-52150003803b1ba4a6d8400d4fdc7a84a67966be02a072ed0dca65f2a13e6fcd3</originalsourceid><addsrcrecordid>eNpNULFuwjAQtapWKqLsHTpY6hx6tmMnGRGCgkTVqoIOXSyTXKJQiKkdIvXv6wgGpnv37r270yPkkcGYMcheVp-TMQcuxkKIDFR8QwZcJEkkEqVur_A9GXm_AwAmeSIyOSDfsw6bNlq7uqrQYUGXB1MhfbOHQHv6Eag6b-sO6dQ2rbN7WlpH187kP3VT0Vln910P5mjak0NPN75vN5Mv_0DuSrP3OLrUIdnMZ-vpIlq9vy6nk1WU84y3keRMho9ECmLLtiY2qkhjgCIuizwxaeiTTKktAjeQcCygyI2SJTdMoCrzQgzJ83nv0dnfE_pW7-zJNeGk5hnECmSayqCCsyp31nuHpT66-mDcn2ag-xB1CFH3IepLiMHydLbUiHglD-M0VuIfKO9tCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904605885</pqid></control><display><type>article</type><title>Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs</title><source>IEEE Xplore</source><creator>Aspragkathos, Sotirios N. ; Karras, George C. ; Kyriakopoulos, Kostas J.</creator><creatorcontrib>Aspragkathos, Sotirios N. ; Karras, George C. ; Kyriakopoulos, Kostas J.</creatorcontrib><description>This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour model allows adaptation to the evolving target's shape, while the proposed event-triggered scheme achieves improved computational efficiency and extended flight duration while generating new control sequences for the UAV. Real-world experimental validation as well as a comparative simulation performance analysis validate the scheme, showcasing its robustness in handling complex scenarios. This approach holds promise for various applications, such as surveillance and autonomous navigation.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3339064</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>aerial systems: Perception and autonomy ; Autonomous aerial vehicles ; autonomous agents ; Autonomous navigation ; Contours ; Deformation ; Evolution ; Formability ; Nonlinear control ; Predictive control ; Robots ; Shape ; Surveillance ; Target tracking ; Tracking control ; Unmanned aerial vehicles ; Vehicle dynamics ; Visual servoing ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2024-02, Vol.9 (2), p.1019-1026</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-52150003803b1ba4a6d8400d4fdc7a84a67966be02a072ed0dca65f2a13e6fcd3</citedby><cites>FETCH-LOGICAL-c292t-52150003803b1ba4a6d8400d4fdc7a84a67966be02a072ed0dca65f2a13e6fcd3</cites><orcidid>0000-0002-2309-4498 ; 0000-0002-1229-3029 ; 0000-0002-4045-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10339846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10339846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aspragkathos, Sotirios N.</creatorcontrib><creatorcontrib>Karras, George C.</creatorcontrib><creatorcontrib>Kyriakopoulos, Kostas J.</creatorcontrib><title>Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour model allows adaptation to the evolving target's shape, while the proposed event-triggered scheme achieves improved computational efficiency and extended flight duration while generating new control sequences for the UAV. Real-world experimental validation as well as a comparative simulation performance analysis validate the scheme, showcasing its robustness in handling complex scenarios. This approach holds promise for various applications, such as surveillance and autonomous navigation.</description><subject>aerial systems: Perception and autonomy</subject><subject>Autonomous aerial vehicles</subject><subject>autonomous agents</subject><subject>Autonomous navigation</subject><subject>Contours</subject><subject>Deformation</subject><subject>Evolution</subject><subject>Formability</subject><subject>Nonlinear control</subject><subject>Predictive control</subject><subject>Robots</subject><subject>Shape</subject><subject>Surveillance</subject><subject>Target tracking</subject><subject>Tracking control</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicle dynamics</subject><subject>Visual servoing</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNULFuwjAQtapWKqLsHTpY6hx6tmMnGRGCgkTVqoIOXSyTXKJQiKkdIvXv6wgGpnv37r270yPkkcGYMcheVp-TMQcuxkKIDFR8QwZcJEkkEqVur_A9GXm_AwAmeSIyOSDfsw6bNlq7uqrQYUGXB1MhfbOHQHv6Eag6b-sO6dQ2rbN7WlpH187kP3VT0Vln910P5mjak0NPN75vN5Mv_0DuSrP3OLrUIdnMZ-vpIlq9vy6nk1WU84y3keRMho9ECmLLtiY2qkhjgCIuizwxaeiTTKktAjeQcCygyI2SJTdMoCrzQgzJ83nv0dnfE_pW7-zJNeGk5hnECmSayqCCsyp31nuHpT66-mDcn2ag-xB1CFH3IepLiMHydLbUiHglD-M0VuIfKO9tCQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Aspragkathos, Sotirios N.</creator><creator>Karras, George C.</creator><creator>Kyriakopoulos, Kostas J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2309-4498</orcidid><orcidid>https://orcid.org/0000-0002-1229-3029</orcidid><orcidid>https://orcid.org/0000-0002-4045-4715</orcidid></search><sort><creationdate>20240201</creationdate><title>Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs</title><author>Aspragkathos, Sotirios N. ; Karras, George C. ; Kyriakopoulos, Kostas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-52150003803b1ba4a6d8400d4fdc7a84a67966be02a072ed0dca65f2a13e6fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aerial systems: Perception and autonomy</topic><topic>Autonomous aerial vehicles</topic><topic>autonomous agents</topic><topic>Autonomous navigation</topic><topic>Contours</topic><topic>Deformation</topic><topic>Evolution</topic><topic>Formability</topic><topic>Nonlinear control</topic><topic>Predictive control</topic><topic>Robots</topic><topic>Shape</topic><topic>Surveillance</topic><topic>Target tracking</topic><topic>Tracking control</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicle dynamics</topic><topic>Visual servoing</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aspragkathos, Sotirios N.</creatorcontrib><creatorcontrib>Karras, George C.</creatorcontrib><creatorcontrib>Kyriakopoulos, Kostas J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aspragkathos, Sotirios N.</au><au>Karras, George C.</au><au>Kyriakopoulos, Kostas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>9</volume><issue>2</issue><spage>1019</spage><epage>1026</epage><pages>1019-1026</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This paper presents a novel approach for tracking deformable contour targets using Unmanned Aerial Vehicles (UAVs). The proposed scheme combines image moments descriptor and Event-Triggered (ET) Nonlinear Model Predictive Control (NMPC) for efficient and accurate tracking. The deformable contour model allows adaptation to the evolving target's shape, while the proposed event-triggered scheme achieves improved computational efficiency and extended flight duration while generating new control sequences for the UAV. Real-world experimental validation as well as a comparative simulation performance analysis validate the scheme, showcasing its robustness in handling complex scenarios. This approach holds promise for various applications, such as surveillance and autonomous navigation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3339064</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2309-4498</orcidid><orcidid>https://orcid.org/0000-0002-1229-3029</orcidid><orcidid>https://orcid.org/0000-0002-4045-4715</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-02, Vol.9 (2), p.1019-1026 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2904605885 |
source | IEEE Xplore |
subjects | aerial systems: Perception and autonomy Autonomous aerial vehicles autonomous agents Autonomous navigation Contours Deformation Evolution Formability Nonlinear control Predictive control Robots Shape Surveillance Target tracking Tracking control Unmanned aerial vehicles Vehicle dynamics Visual servoing Visualization |
title | Event-Triggered Image Moments Predictive Control for Tracking Evolving Features Using UAVs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Triggered%20Image%20Moments%20Predictive%20Control%20for%20Tracking%20Evolving%20Features%20Using%20UAVs&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Aspragkathos,%20Sotirios%20N.&rft.date=2024-02-01&rft.volume=9&rft.issue=2&rft.spage=1019&rft.epage=1026&rft.pages=1019-1026&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3339064&rft_dat=%3Cproquest_RIE%3E2904605885%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904605885&rft_id=info:pmid/&rft_ieee_id=10339846&rfr_iscdi=true |