Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors

Superhydrophilic surfaces have been applied for supercapacitor; however, during energy storage reaction, how the wettability affects the process of electrochemical reaction specifically is still unclear. Herein, we demonstrate superhydrophilic surface for promotion of electrochemical reactions by li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2024, Vol.43 (1), p.138-147
Hauptverfasser: Wang, Yi-Ran, Zhang, Fei, Gu, Jian-Min, Zhao, Xiao-Yu, Zhao, Ran, Wang, Xing, Wu, Tian-Hui, Wang, Jing, Wang, Ji-Dong, Wang, De-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 138
container_title Rare metals
container_volume 43
creator Wang, Yi-Ran
Zhang, Fei
Gu, Jian-Min
Zhao, Xiao-Yu
Zhao, Ran
Wang, Xing
Wu, Tian-Hui
Wang, Jing
Wang, Ji-Dong
Wang, De-Song
description Superhydrophilic surfaces have been applied for supercapacitor; however, during energy storage reaction, how the wettability affects the process of electrochemical reaction specifically is still unclear. Herein, we demonstrate superhydrophilic surface for promotion of electrochemical reactions by liquid affinity and further explain the mechanism, where the transition of the wettability state caused by the change in surface free energy is the main reason for the obvious increase in specific capacitance. Through citric acid assistance strategy, an intrinsically hydrophobic Ni(OH) 2 thick nanosheets (HNHTNs, 16 nm) can be transitioned into superhydrophilic Ni(OH) 2 ultrathin nanosheets (SNHUNs, 6.8 nm), where the water contact angle was 0° and the surface free energy increased from 8.6 to 65.8 mN·m −1 , implying superhydrophilicity. Compared with HNHTNs, the specific capacitance of SNHUNs is doubled: from 1230 F·g −1 (HNHTNs) to 2350 F·g −1 (2 A·g −1 ) and, even at 20 A·g −1 , from 833 F·g −1 (HNHTNs) to 1670 F·g −1 . The asymmetric capacitors assembled by SNHUNs and activated carbon show 52.44 Wh·kg −1 at 160 W·kg −1 and excellent stability with ~ 90% retention after 5000 cycles (~ 80% retention after 9500 cycles). The promotion of electrochemical performances is ascribed to the change of surface wettability caused by surface free energy, which greatly increase affinity of electrode to the surrounding liquid environment to reduce the interface resistance and optimize the electron transport path. Graphical Abstract
doi_str_mv 10.1007/s12598-023-02386-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904605867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904605867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-dcf9034ee26b94e6ee705153e12ea96c5620fb2b8fb0ced334373a15ac5beafe3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0qTtURa_QPCgnkOaTrdZu21NWtj992a3gjcPQ4bwvs_AQ8g1g1sGkN0FxmWRU-DiMLmiuxOyYLnKaMZyeRp3AEZBcnZOLkLYAKSpUrAg7n0a0Df7yvdD41pnk87ZL2yT49fOVZhM7ejN2Lgu6UzXhwZxDAl2pmwxady6oRFQ935rOouJCfvtFkcfQeFAtmYw1o29D5fkrDZtwKvfd0k-Hx8-Vs_09e3pZXX_Si3PYKSVrQsQKSJXZZGiQsxAMimQcTSFslJxqEte5nUJFishUpEJw6SxskRTo1iSm5k7-P57wjDqTT_5Lp7UvIBUgYxaYorPKev7EDzWevBua_xeM9AHpXpWqqNOfVSqd7Ek5lKI4W6N_g_9T-sHVxd-KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904605867</pqid></control><display><type>article</type><title>Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yi-Ran ; Zhang, Fei ; Gu, Jian-Min ; Zhao, Xiao-Yu ; Zhao, Ran ; Wang, Xing ; Wu, Tian-Hui ; Wang, Jing ; Wang, Ji-Dong ; Wang, De-Song</creator><creatorcontrib>Wang, Yi-Ran ; Zhang, Fei ; Gu, Jian-Min ; Zhao, Xiao-Yu ; Zhao, Ran ; Wang, Xing ; Wu, Tian-Hui ; Wang, Jing ; Wang, Ji-Dong ; Wang, De-Song</creatorcontrib><description>Superhydrophilic surfaces have been applied for supercapacitor; however, during energy storage reaction, how the wettability affects the process of electrochemical reaction specifically is still unclear. Herein, we demonstrate superhydrophilic surface for promotion of electrochemical reactions by liquid affinity and further explain the mechanism, where the transition of the wettability state caused by the change in surface free energy is the main reason for the obvious increase in specific capacitance. Through citric acid assistance strategy, an intrinsically hydrophobic Ni(OH) 2 thick nanosheets (HNHTNs, 16 nm) can be transitioned into superhydrophilic Ni(OH) 2 ultrathin nanosheets (SNHUNs, 6.8 nm), where the water contact angle was 0° and the surface free energy increased from 8.6 to 65.8 mN·m −1 , implying superhydrophilicity. Compared with HNHTNs, the specific capacitance of SNHUNs is doubled: from 1230 F·g −1 (HNHTNs) to 2350 F·g −1 (2 A·g −1 ) and, even at 20 A·g −1 , from 833 F·g −1 (HNHTNs) to 1670 F·g −1 . The asymmetric capacitors assembled by SNHUNs and activated carbon show 52.44 Wh·kg −1 at 160 W·kg −1 and excellent stability with ~ 90% retention after 5000 cycles (~ 80% retention after 9500 cycles). The promotion of electrochemical performances is ascribed to the change of surface wettability caused by surface free energy, which greatly increase affinity of electrode to the surrounding liquid environment to reduce the interface resistance and optimize the electron transport path. Graphical Abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-023-02386-x</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Activated carbon ; Affinity ; Asymmetry ; Biomaterials ; Capacitance ; Chemical reactions ; Chemistry and Materials Science ; Citric acid ; Contact angle ; Electron transport ; Energy ; Energy storage ; Free energy ; Hydrophilicity ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; Nanosheets ; Nickel compounds ; Original Article ; Physical Chemistry ; Supercapacitors ; Wettability</subject><ispartof>Rare metals, 2024, Vol.43 (1), p.138-147</ispartof><rights>Youke Publishing Co.,Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-dcf9034ee26b94e6ee705153e12ea96c5620fb2b8fb0ced334373a15ac5beafe3</cites><orcidid>0000-0002-4031-8385 ; 0000-0002-2235-4286 ; 0000-0003-2137-5760 ; 0000-0003-1315-7886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-023-02386-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-023-02386-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Wang, Yi-Ran</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Gu, Jian-Min</creatorcontrib><creatorcontrib>Zhao, Xiao-Yu</creatorcontrib><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Wu, Tian-Hui</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Ji-Dong</creatorcontrib><creatorcontrib>Wang, De-Song</creatorcontrib><title>Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Superhydrophilic surfaces have been applied for supercapacitor; however, during energy storage reaction, how the wettability affects the process of electrochemical reaction specifically is still unclear. Herein, we demonstrate superhydrophilic surface for promotion of electrochemical reactions by liquid affinity and further explain the mechanism, where the transition of the wettability state caused by the change in surface free energy is the main reason for the obvious increase in specific capacitance. Through citric acid assistance strategy, an intrinsically hydrophobic Ni(OH) 2 thick nanosheets (HNHTNs, 16 nm) can be transitioned into superhydrophilic Ni(OH) 2 ultrathin nanosheets (SNHUNs, 6.8 nm), where the water contact angle was 0° and the surface free energy increased from 8.6 to 65.8 mN·m −1 , implying superhydrophilicity. Compared with HNHTNs, the specific capacitance of SNHUNs is doubled: from 1230 F·g −1 (HNHTNs) to 2350 F·g −1 (2 A·g −1 ) and, even at 20 A·g −1 , from 833 F·g −1 (HNHTNs) to 1670 F·g −1 . The asymmetric capacitors assembled by SNHUNs and activated carbon show 52.44 Wh·kg −1 at 160 W·kg −1 and excellent stability with ~ 90% retention after 5000 cycles (~ 80% retention after 9500 cycles). The promotion of electrochemical performances is ascribed to the change of surface wettability caused by surface free energy, which greatly increase affinity of electrode to the surrounding liquid environment to reduce the interface resistance and optimize the electron transport path. Graphical Abstract</description><subject>Activated carbon</subject><subject>Affinity</subject><subject>Asymmetry</subject><subject>Biomaterials</subject><subject>Capacitance</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Citric acid</subject><subject>Contact angle</subject><subject>Electron transport</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Free energy</subject><subject>Hydrophilicity</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Nanosheets</subject><subject>Nickel compounds</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Supercapacitors</subject><subject>Wettability</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0qTtURa_QPCgnkOaTrdZu21NWtj992a3gjcPQ4bwvs_AQ8g1g1sGkN0FxmWRU-DiMLmiuxOyYLnKaMZyeRp3AEZBcnZOLkLYAKSpUrAg7n0a0Df7yvdD41pnk87ZL2yT49fOVZhM7ejN2Lgu6UzXhwZxDAl2pmwxady6oRFQ935rOouJCfvtFkcfQeFAtmYw1o29D5fkrDZtwKvfd0k-Hx8-Vs_09e3pZXX_Si3PYKSVrQsQKSJXZZGiQsxAMimQcTSFslJxqEte5nUJFishUpEJw6SxskRTo1iSm5k7-P57wjDqTT_5Lp7UvIBUgYxaYorPKev7EDzWevBua_xeM9AHpXpWqqNOfVSqd7Ek5lKI4W6N_g_9T-sHVxd-KQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Yi-Ran</creator><creator>Zhang, Fei</creator><creator>Gu, Jian-Min</creator><creator>Zhao, Xiao-Yu</creator><creator>Zhao, Ran</creator><creator>Wang, Xing</creator><creator>Wu, Tian-Hui</creator><creator>Wang, Jing</creator><creator>Wang, Ji-Dong</creator><creator>Wang, De-Song</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4031-8385</orcidid><orcidid>https://orcid.org/0000-0002-2235-4286</orcidid><orcidid>https://orcid.org/0000-0003-2137-5760</orcidid><orcidid>https://orcid.org/0000-0003-1315-7886</orcidid></search><sort><creationdate>2024</creationdate><title>Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors</title><author>Wang, Yi-Ran ; Zhang, Fei ; Gu, Jian-Min ; Zhao, Xiao-Yu ; Zhao, Ran ; Wang, Xing ; Wu, Tian-Hui ; Wang, Jing ; Wang, Ji-Dong ; Wang, De-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-dcf9034ee26b94e6ee705153e12ea96c5620fb2b8fb0ced334373a15ac5beafe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Affinity</topic><topic>Asymmetry</topic><topic>Biomaterials</topic><topic>Capacitance</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Citric acid</topic><topic>Contact angle</topic><topic>Electron transport</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Free energy</topic><topic>Hydrophilicity</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Nanosheets</topic><topic>Nickel compounds</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Supercapacitors</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi-Ran</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Gu, Jian-Min</creatorcontrib><creatorcontrib>Zhao, Xiao-Yu</creatorcontrib><creatorcontrib>Zhao, Ran</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Wu, Tian-Hui</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Ji-Dong</creatorcontrib><creatorcontrib>Wang, De-Song</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi-Ran</au><au>Zhang, Fei</au><au>Gu, Jian-Min</au><au>Zhao, Xiao-Yu</au><au>Zhao, Ran</au><au>Wang, Xing</au><au>Wu, Tian-Hui</au><au>Wang, Jing</au><au>Wang, Ji-Dong</au><au>Wang, De-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2024</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><spage>138</spage><epage>147</epage><pages>138-147</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Superhydrophilic surfaces have been applied for supercapacitor; however, during energy storage reaction, how the wettability affects the process of electrochemical reaction specifically is still unclear. Herein, we demonstrate superhydrophilic surface for promotion of electrochemical reactions by liquid affinity and further explain the mechanism, where the transition of the wettability state caused by the change in surface free energy is the main reason for the obvious increase in specific capacitance. Through citric acid assistance strategy, an intrinsically hydrophobic Ni(OH) 2 thick nanosheets (HNHTNs, 16 nm) can be transitioned into superhydrophilic Ni(OH) 2 ultrathin nanosheets (SNHUNs, 6.8 nm), where the water contact angle was 0° and the surface free energy increased from 8.6 to 65.8 mN·m −1 , implying superhydrophilicity. Compared with HNHTNs, the specific capacitance of SNHUNs is doubled: from 1230 F·g −1 (HNHTNs) to 2350 F·g −1 (2 A·g −1 ) and, even at 20 A·g −1 , from 833 F·g −1 (HNHTNs) to 1670 F·g −1 . The asymmetric capacitors assembled by SNHUNs and activated carbon show 52.44 Wh·kg −1 at 160 W·kg −1 and excellent stability with ~ 90% retention after 5000 cycles (~ 80% retention after 9500 cycles). The promotion of electrochemical performances is ascribed to the change of surface wettability caused by surface free energy, which greatly increase affinity of electrode to the surrounding liquid environment to reduce the interface resistance and optimize the electron transport path. Graphical Abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-023-02386-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4031-8385</orcidid><orcidid>https://orcid.org/0000-0002-2235-4286</orcidid><orcidid>https://orcid.org/0000-0003-2137-5760</orcidid><orcidid>https://orcid.org/0000-0003-1315-7886</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2024, Vol.43 (1), p.138-147
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2904605867
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Activated carbon
Affinity
Asymmetry
Biomaterials
Capacitance
Chemical reactions
Chemistry and Materials Science
Citric acid
Contact angle
Electron transport
Energy
Energy storage
Free energy
Hydrophilicity
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
Nanosheets
Nickel compounds
Original Article
Physical Chemistry
Supercapacitors
Wettability
title Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superhydrophilic%20nickel%20hydroxide%20ultrathin%20nanosheets%20enable%20high-performance%20asymmetric%20supercapacitors&rft.jtitle=Rare%20metals&rft.au=Wang,%20Yi-Ran&rft.date=2024&rft.volume=43&rft.issue=1&rft.spage=138&rft.epage=147&rft.pages=138-147&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-023-02386-x&rft_dat=%3Cproquest_cross%3E2904605867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904605867&rft_id=info:pmid/&rfr_iscdi=true