Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations

In this paper, we propose two new approximation methods on a general mesh for the generalized Caputo fractional derivative of order α ∈ ( 0 , 1 ) . The accuracy of these two methods is shown to be of order ( 3 - α ) which improves some previous work done to date. To demonstrate the accuracy and usef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2023-12, Vol.69 (6), p.4689-4716
Hauptverfasser: Li, Xuhao, Wong, Patricia J. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4716
container_issue 6
container_start_page 4689
container_title Journal of applied mathematics & computing
container_volume 69
creator Li, Xuhao
Wong, Patricia J. Y.
description In this paper, we propose two new approximation methods on a general mesh for the generalized Caputo fractional derivative of order α ∈ ( 0 , 1 ) . The accuracy of these two methods is shown to be of order ( 3 - α ) which improves some previous work done to date. To demonstrate the accuracy and usefulness of the proposed approximations, we carry out experiment on test examples and apply these approximations to solve generalized fractional sub-diffusion equations. The numerical results indicate that the proposed methods perform well in practice. Our contributions lie in two aspects: (i) we propose high order approximations that work on a general mesh; (ii) we establish the well-posedness of generalized fractional sub-diffusion equations and develop numerical schemes using the new high order approximations.
doi_str_mv 10.1007/s12190-023-01944-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904605498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904605498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-82a2c4635af3162bbc293d1eddb7a72c8bc7179d9efb638e13900f6860d1e0293</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9AVckrtEDc4OlabwlTdzUNWEYqDTjTAszbfU1fGGZjom6ccUJ-f7vwI_QJYVrClDcBMqoAAIsIUBFmpL9EZpQnmeEAc-O45wJTrJ4cYrOQlgB5IUAMUGfi12LG7PDar327d69qc61TcC29XhpGuNV7T5MhWdq3Xcttl7pAVA1rox320hvDVZNhbtX4_xgqZ0-OLBrcGjrrWuWf0y_FKEvSeWs7cPAm00_Lj9HJ1bVwVx8n1P0cn-3mD2S-fPD0-x2TjQroCOcKabTPMmUTWjOylIzkVTUVFVZqIJpXuqCFqISxpZ5wg1NBIDNeQ4RgshO0dXojT_f9CZ0ctX2Pj4sSCYgzSFLBY8UGynt2xC8sXLtY03-XVKQQ_lyLF_G8uWhfLmPoWQMhQg3S-N_1P-kvgDEvYyi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904605498</pqid></control><display><type>article</type><title>Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Xuhao ; Wong, Patricia J. Y.</creator><creatorcontrib>Li, Xuhao ; Wong, Patricia J. Y.</creatorcontrib><description>In this paper, we propose two new approximation methods on a general mesh for the generalized Caputo fractional derivative of order α ∈ ( 0 , 1 ) . The accuracy of these two methods is shown to be of order ( 3 - α ) which improves some previous work done to date. To demonstrate the accuracy and usefulness of the proposed approximations, we carry out experiment on test examples and apply these approximations to solve generalized fractional sub-diffusion equations. The numerical results indicate that the proposed methods perform well in practice. Our contributions lie in two aspects: (i) we propose high order approximations that work on a general mesh; (ii) we establish the well-posedness of generalized fractional sub-diffusion equations and develop numerical schemes using the new high order approximations.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-023-01944-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Computational Mathematics and Numerical Analysis ; Diffusion effects ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Original Research ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2023-12, Vol.69 (6), p.4689-4716</ispartof><rights>The Author(s) under exclusive licence to Korean Society for Informatics and Computational Applied Mathematics 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-82a2c4635af3162bbc293d1eddb7a72c8bc7179d9efb638e13900f6860d1e0293</cites><orcidid>0000-0001-8375-5553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-023-01944-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-023-01944-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Xuhao</creatorcontrib><creatorcontrib>Wong, Patricia J. Y.</creatorcontrib><title>Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>In this paper, we propose two new approximation methods on a general mesh for the generalized Caputo fractional derivative of order α ∈ ( 0 , 1 ) . The accuracy of these two methods is shown to be of order ( 3 - α ) which improves some previous work done to date. To demonstrate the accuracy and usefulness of the proposed approximations, we carry out experiment on test examples and apply these approximations to solve generalized fractional sub-diffusion equations. The numerical results indicate that the proposed methods perform well in practice. Our contributions lie in two aspects: (i) we propose high order approximations that work on a general mesh; (ii) we establish the well-posedness of generalized fractional sub-diffusion equations and develop numerical schemes using the new high order approximations.</description><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Diffusion effects</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Original Research</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9AVckrtEDc4OlabwlTdzUNWEYqDTjTAszbfU1fGGZjom6ccUJ-f7vwI_QJYVrClDcBMqoAAIsIUBFmpL9EZpQnmeEAc-O45wJTrJ4cYrOQlgB5IUAMUGfi12LG7PDar327d69qc61TcC29XhpGuNV7T5MhWdq3Xcttl7pAVA1rox320hvDVZNhbtX4_xgqZ0-OLBrcGjrrWuWf0y_FKEvSeWs7cPAm00_Lj9HJ1bVwVx8n1P0cn-3mD2S-fPD0-x2TjQroCOcKabTPMmUTWjOylIzkVTUVFVZqIJpXuqCFqISxpZ5wg1NBIDNeQ4RgshO0dXojT_f9CZ0ctX2Pj4sSCYgzSFLBY8UGynt2xC8sXLtY03-XVKQQ_lyLF_G8uWhfLmPoWQMhQg3S-N_1P-kvgDEvYyi</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Li, Xuhao</creator><creator>Wong, Patricia J. Y.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8375-5553</orcidid></search><sort><creationdate>20231201</creationdate><title>Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations</title><author>Li, Xuhao ; Wong, Patricia J. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-82a2c4635af3162bbc293d1eddb7a72c8bc7179d9efb638e13900f6860d1e0293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Diffusion effects</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Original Research</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuhao</creatorcontrib><creatorcontrib>Wong, Patricia J. Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuhao</au><au>Wong, Patricia J. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>69</volume><issue>6</issue><spage>4689</spage><epage>4716</epage><pages>4689-4716</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>In this paper, we propose two new approximation methods on a general mesh for the generalized Caputo fractional derivative of order α ∈ ( 0 , 1 ) . The accuracy of these two methods is shown to be of order ( 3 - α ) which improves some previous work done to date. To demonstrate the accuracy and usefulness of the proposed approximations, we carry out experiment on test examples and apply these approximations to solve generalized fractional sub-diffusion equations. The numerical results indicate that the proposed methods perform well in practice. Our contributions lie in two aspects: (i) we propose high order approximations that work on a general mesh; (ii) we establish the well-posedness of generalized fractional sub-diffusion equations and develop numerical schemes using the new high order approximations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-023-01944-x</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8375-5553</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2023-12, Vol.69 (6), p.4689-4716
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2904605498
source Springer Nature - Complete Springer Journals
subjects Approximation
Computational Mathematics and Numerical Analysis
Diffusion effects
Mathematical analysis
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Original Research
Theory of Computation
title Two new approximations for generalized Caputo fractional derivative and their application in solving generalized fractional sub-diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20new%20approximations%20for%20generalized%20Caputo%20fractional%20derivative%20and%20their%20application%20in%20solving%20generalized%20fractional%20sub-diffusion%20equations&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Li,%20Xuhao&rft.date=2023-12-01&rft.volume=69&rft.issue=6&rft.spage=4689&rft.epage=4716&rft.pages=4689-4716&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-023-01944-x&rft_dat=%3Cproquest_cross%3E2904605498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904605498&rft_id=info:pmid/&rfr_iscdi=true