Nonlinear property and dynamic stability analysis of a novel bio-inspired vibration isolation–absorption structure

Inspired by Ostrich anti-vibration and shock and vibration absorption properties, a novel bio-inspired vibration isolation–absorption (BIVIA) system is presented to design wideband vibration isolation bandwidth, low-frequency/ultra-low-frequency vibration isolation and high stability using toe-leg-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024, Vol.112 (2), p.887-902
Hauptverfasser: Zhou, Shihua, Hou, Bowen, Zheng, Lisheng, Xu, Pingzhen, Yu, Tianzhuang, Ren, Zhaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 902
container_issue 2
container_start_page 887
container_title Nonlinear dynamics
container_volume 112
creator Zhou, Shihua
Hou, Bowen
Zheng, Lisheng
Xu, Pingzhen
Yu, Tianzhuang
Ren, Zhaohui
description Inspired by Ostrich anti-vibration and shock and vibration absorption properties, a novel bio-inspired vibration isolation–absorption (BIVIA) system is presented to design wideband vibration isolation bandwidth, low-frequency/ultra-low-frequency vibration isolation and high stability using toe-leg-spine coupling structure. Considering the kinematic relationship between skeletons and muscle/tendon, the geometrical relationships and dynamical equations of the BIVIA system are deduced for theoretical analysis and model verification. The influences of different parameters on loading capacity, dynamic stability, quasi-zero stiffness (QZS) zone, vibration isolation–absorption performance and vibration transmissibility are discussed. It discovers that high loading capacity and extended QZS zone are achieved by coupled vibration isolation–absorption structures. Moreover, the desirable and adjustable vibration isolation–absorption performance of the BIVIA structure can be obtained by designing key parameters. The BIVIA structure presents a practical method for bio-inspired vibration isolation and could be used in engineering and manufacturing.
doi_str_mv 10.1007/s11071-023-09084-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904486534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904486534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7cab47d908b9868eed4329e9075a9fe8ceef3c20dabc055ea2325a5f823b04ff3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA6-rNT6fNUgb_YNCNwuxCkqaSoZPUpDPQne_gG_okdlrBnat7ufecA-dD6JLANQEobhIhUJAMKMtAQMkzfoRmJC9YRhdifYxmICg_vNan6CylDQAwCuUMdc_BN85bFXEbQ2tj12PlK1z1Xm2dwalT2jVuvKqmTy7hUGOFfdjbBmsXMudT66Kt8N7pqDoXPHYpNOP2_fmldAqxHc-pizvT7aI9Rye1apK9-J1z9HZ_97p8zFYvD0_L21VmGBFdVhileVENfbQoF6W1FWdUWAFFrkRtS2NtzQyFSmkDeW4VZTRXeV1SpoHXNZujqyl3qPaxs6mTm7CLQ48kqQDOy0XO-KCik8rEkFK0tWyj26rYSwLyQFdOdOVAV4505cHEJlMaxP7dxr_of1w_2wOB-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904486534</pqid></control><display><type>article</type><title>Nonlinear property and dynamic stability analysis of a novel bio-inspired vibration isolation–absorption structure</title><source>SpringerLink (Online service)</source><creator>Zhou, Shihua ; Hou, Bowen ; Zheng, Lisheng ; Xu, Pingzhen ; Yu, Tianzhuang ; Ren, Zhaohui</creator><creatorcontrib>Zhou, Shihua ; Hou, Bowen ; Zheng, Lisheng ; Xu, Pingzhen ; Yu, Tianzhuang ; Ren, Zhaohui</creatorcontrib><description>Inspired by Ostrich anti-vibration and shock and vibration absorption properties, a novel bio-inspired vibration isolation–absorption (BIVIA) system is presented to design wideband vibration isolation bandwidth, low-frequency/ultra-low-frequency vibration isolation and high stability using toe-leg-spine coupling structure. Considering the kinematic relationship between skeletons and muscle/tendon, the geometrical relationships and dynamical equations of the BIVIA system are deduced for theoretical analysis and model verification. The influences of different parameters on loading capacity, dynamic stability, quasi-zero stiffness (QZS) zone, vibration isolation–absorption performance and vibration transmissibility are discussed. It discovers that high loading capacity and extended QZS zone are achieved by coupled vibration isolation–absorption structures. Moreover, the desirable and adjustable vibration isolation–absorption performance of the BIVIA structure can be obtained by designing key parameters. The BIVIA structure presents a practical method for bio-inspired vibration isolation and could be used in engineering and manufacturing.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-09084-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Absorption ; Automotive Engineering ; Biomimetics ; Classical Mechanics ; Control ; Design ; Dynamic stability ; Dynamical Systems ; Energy consumption ; Engineering ; Kinematics ; Mechanical Engineering ; Original Paper ; Parameters ; Performance evaluation ; Stability analysis ; Structural stability ; Tendons ; Vibration ; Vibration analysis</subject><ispartof>Nonlinear dynamics, 2024, Vol.112 (2), p.887-902</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7cab47d908b9868eed4329e9075a9fe8ceef3c20dabc055ea2325a5f823b04ff3</citedby><cites>FETCH-LOGICAL-c319t-7cab47d908b9868eed4329e9075a9fe8ceef3c20dabc055ea2325a5f823b04ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-09084-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-09084-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhou, Shihua</creatorcontrib><creatorcontrib>Hou, Bowen</creatorcontrib><creatorcontrib>Zheng, Lisheng</creatorcontrib><creatorcontrib>Xu, Pingzhen</creatorcontrib><creatorcontrib>Yu, Tianzhuang</creatorcontrib><creatorcontrib>Ren, Zhaohui</creatorcontrib><title>Nonlinear property and dynamic stability analysis of a novel bio-inspired vibration isolation–absorption structure</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Inspired by Ostrich anti-vibration and shock and vibration absorption properties, a novel bio-inspired vibration isolation–absorption (BIVIA) system is presented to design wideband vibration isolation bandwidth, low-frequency/ultra-low-frequency vibration isolation and high stability using toe-leg-spine coupling structure. Considering the kinematic relationship between skeletons and muscle/tendon, the geometrical relationships and dynamical equations of the BIVIA system are deduced for theoretical analysis and model verification. The influences of different parameters on loading capacity, dynamic stability, quasi-zero stiffness (QZS) zone, vibration isolation–absorption performance and vibration transmissibility are discussed. It discovers that high loading capacity and extended QZS zone are achieved by coupled vibration isolation–absorption structures. Moreover, the desirable and adjustable vibration isolation–absorption performance of the BIVIA structure can be obtained by designing key parameters. The BIVIA structure presents a practical method for bio-inspired vibration isolation and could be used in engineering and manufacturing.</description><subject>Absorption</subject><subject>Automotive Engineering</subject><subject>Biomimetics</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Design</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Kinematics</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Stability analysis</subject><subject>Structural stability</subject><subject>Tendons</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuA6-rNT6fNUgb_YNCNwuxCkqaSoZPUpDPQne_gG_okdlrBnat7ufecA-dD6JLANQEobhIhUJAMKMtAQMkzfoRmJC9YRhdifYxmICg_vNan6CylDQAwCuUMdc_BN85bFXEbQ2tj12PlK1z1Xm2dwalT2jVuvKqmTy7hUGOFfdjbBmsXMudT66Kt8N7pqDoXPHYpNOP2_fmldAqxHc-pizvT7aI9Rye1apK9-J1z9HZ_97p8zFYvD0_L21VmGBFdVhileVENfbQoF6W1FWdUWAFFrkRtS2NtzQyFSmkDeW4VZTRXeV1SpoHXNZujqyl3qPaxs6mTm7CLQ48kqQDOy0XO-KCik8rEkFK0tWyj26rYSwLyQFdOdOVAV4505cHEJlMaxP7dxr_of1w_2wOB-Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Shihua</creator><creator>Hou, Bowen</creator><creator>Zheng, Lisheng</creator><creator>Xu, Pingzhen</creator><creator>Yu, Tianzhuang</creator><creator>Ren, Zhaohui</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>2024</creationdate><title>Nonlinear property and dynamic stability analysis of a novel bio-inspired vibration isolation–absorption structure</title><author>Zhou, Shihua ; Hou, Bowen ; Zheng, Lisheng ; Xu, Pingzhen ; Yu, Tianzhuang ; Ren, Zhaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7cab47d908b9868eed4329e9075a9fe8ceef3c20dabc055ea2325a5f823b04ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Automotive Engineering</topic><topic>Biomimetics</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Design</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Kinematics</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Stability analysis</topic><topic>Structural stability</topic><topic>Tendons</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shihua</creatorcontrib><creatorcontrib>Hou, Bowen</creatorcontrib><creatorcontrib>Zheng, Lisheng</creatorcontrib><creatorcontrib>Xu, Pingzhen</creatorcontrib><creatorcontrib>Yu, Tianzhuang</creatorcontrib><creatorcontrib>Ren, Zhaohui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shihua</au><au>Hou, Bowen</au><au>Zheng, Lisheng</au><au>Xu, Pingzhen</au><au>Yu, Tianzhuang</au><au>Ren, Zhaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear property and dynamic stability analysis of a novel bio-inspired vibration isolation–absorption structure</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024</date><risdate>2024</risdate><volume>112</volume><issue>2</issue><spage>887</spage><epage>902</epage><pages>887-902</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Inspired by Ostrich anti-vibration and shock and vibration absorption properties, a novel bio-inspired vibration isolation–absorption (BIVIA) system is presented to design wideband vibration isolation bandwidth, low-frequency/ultra-low-frequency vibration isolation and high stability using toe-leg-spine coupling structure. Considering the kinematic relationship between skeletons and muscle/tendon, the geometrical relationships and dynamical equations of the BIVIA system are deduced for theoretical analysis and model verification. The influences of different parameters on loading capacity, dynamic stability, quasi-zero stiffness (QZS) zone, vibration isolation–absorption performance and vibration transmissibility are discussed. It discovers that high loading capacity and extended QZS zone are achieved by coupled vibration isolation–absorption structures. Moreover, the desirable and adjustable vibration isolation–absorption performance of the BIVIA structure can be obtained by designing key parameters. The BIVIA structure presents a practical method for bio-inspired vibration isolation and could be used in engineering and manufacturing.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-09084-4</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024, Vol.112 (2), p.887-902
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2904486534
source SpringerLink (Online service)
subjects Absorption
Automotive Engineering
Biomimetics
Classical Mechanics
Control
Design
Dynamic stability
Dynamical Systems
Energy consumption
Engineering
Kinematics
Mechanical Engineering
Original Paper
Parameters
Performance evaluation
Stability analysis
Structural stability
Tendons
Vibration
Vibration analysis
title Nonlinear property and dynamic stability analysis of a novel bio-inspired vibration isolation–absorption structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20property%20and%20dynamic%20stability%20analysis%20of%20a%20novel%20bio-inspired%20vibration%20isolation%E2%80%93absorption%20structure&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhou,%20Shihua&rft.date=2024&rft.volume=112&rft.issue=2&rft.spage=887&rft.epage=902&rft.pages=887-902&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-09084-4&rft_dat=%3Cproquest_cross%3E2904486534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904486534&rft_id=info:pmid/&rfr_iscdi=true