Interpretable Classification of Wiki-Review Streams
Wiki articles are created and maintained by a crowd of editors, producing a continuous stream of reviews. Reviews can take the form of additions, reverts, or both. This crowdsourcing model is exposed to manipulation since neither reviews nor editors are automatically screened and purged. To protect...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.141137-141151 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141151 |
---|---|
container_issue | |
container_start_page | 141137 |
container_title | IEEE access |
container_volume | 11 |
creator | Garcia-Mendez, Silvia Leal, Fatima Malheiro, Benedita Burguillo-Rial, Juan Carlos |
description | Wiki articles are created and maintained by a crowd of editors, producing a continuous stream of reviews. Reviews can take the form of additions, reverts, or both. This crowdsourcing model is exposed to manipulation since neither reviews nor editors are automatically screened and purged. To protect articles against vandalism or damage, the stream of reviews can be mined to classify reviews and profile editors in real-time. The goal of this work is to anticipate and explain which reviews to revert. This way, editors are informed why their edits will be reverted. The proposed method employs stream-based processing, updating the profiling and classification models on each incoming event. The profiling uses side and content-based features employing Natural Language Processing, and editor profiles are incrementally updated based on their reviews. Since the proposed method relies on self-explainable classification algorithms, it is possible to understand why a review has been classified as a revert or a non-revert. In addition, this work contributes an algorithm for generating synthetic data for class balancing, making the final classification fairer. The proposed online method was tested with a real data set from Wikivoyage, which was balanced through the aforementioned synthetic data generation. The results attained near-90% values for all evaluation metrics (accuracy, precision, recall, and {F} -measure). |
doi_str_mv | 10.1109/ACCESS.2023.3342472 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2904418270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10356073</ieee_id><doaj_id>oai_doaj_org_article_0400dab2c00144c1a8922d2ad6ff0d18</doaj_id><sourcerecordid>2904418270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-c88996b7fde88a98807b275bae4dc2eb3a7df0341aea566221c974aa173c8cb13</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-Aj0EPKfuv2Q3xxKqFgqCVTwuk81EtqbdupsqfntTU6RzmeEx783wI-Sa0SljtLibleV8tZpyysVUCMml4mdkxFlepCIT-fnJfEkmMa5pX7qXMjUiYrHtMOwCdlC1mJQtxOgaZ6Fzfpv4JnlzHy59xi-H38mqCwibeEUuGmgjTo59TF7v5y_lY7p8eliUs2VqhdZdarUuirxSTY1aQ6E1VRVXWQUoa8uxEqDqhgrJACHLc86ZLZQEYEpYbSsmxmQx5NYe1mYX3AbCj_HgzJ_gw7uB0DnboqGS0hoqbillUloGuuC85lDnTUNrpvus2yFrF_znHmNn1n4ftv37hhdUSqa5ov2WGLZs8DEGbP6vMmoOsM0A2xxgmyPs3nUzuBwinjhEllMlxC9gR3mq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904418270</pqid></control><display><type>article</type><title>Interpretable Classification of Wiki-Review Streams</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Garcia-Mendez, Silvia ; Leal, Fatima ; Malheiro, Benedita ; Burguillo-Rial, Juan Carlos</creator><creatorcontrib>Garcia-Mendez, Silvia ; Leal, Fatima ; Malheiro, Benedita ; Burguillo-Rial, Juan Carlos</creatorcontrib><description>Wiki articles are created and maintained by a crowd of editors, producing a continuous stream of reviews. Reviews can take the form of additions, reverts, or both. This crowdsourcing model is exposed to manipulation since neither reviews nor editors are automatically screened and purged. To protect articles against vandalism or damage, the stream of reviews can be mined to classify reviews and profile editors in real-time. The goal of this work is to anticipate and explain which reviews to revert. This way, editors are informed why their edits will be reverted. The proposed method employs stream-based processing, updating the profiling and classification models on each incoming event. The profiling uses side and content-based features employing Natural Language Processing, and editor profiles are incrementally updated based on their reviews. Since the proposed method relies on self-explainable classification algorithms, it is possible to understand why a review has been classified as a revert or a non-revert. In addition, this work contributes an algorithm for generating synthetic data for class balancing, making the final classification fairer. The proposed online method was tested with a real data set from Wikivoyage, which was balanced through the aforementioned synthetic data generation. The results attained near-90% values for all evaluation metrics (accuracy, precision, recall, and <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula>-measure).</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3342472</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification ; Classification algorithms ; Data reliability and fairness ; data-stream processing and classification ; Electronic publishing ; Encyclopedias ; Feature extraction ; Natural language processing ; Real-time systems ; Streams ; Synthetic data ; transparency ; Vandalism ; wikis</subject><ispartof>IEEE access, 2023-01, Vol.11, p.141137-141151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-c88996b7fde88a98807b275bae4dc2eb3a7df0341aea566221c974aa173c8cb13</cites><orcidid>0000-0001-9083-4292 ; 0000-0003-0533-1303 ; 0000-0003-4418-2590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10356073$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Garcia-Mendez, Silvia</creatorcontrib><creatorcontrib>Leal, Fatima</creatorcontrib><creatorcontrib>Malheiro, Benedita</creatorcontrib><creatorcontrib>Burguillo-Rial, Juan Carlos</creatorcontrib><title>Interpretable Classification of Wiki-Review Streams</title><title>IEEE access</title><addtitle>Access</addtitle><description>Wiki articles are created and maintained by a crowd of editors, producing a continuous stream of reviews. Reviews can take the form of additions, reverts, or both. This crowdsourcing model is exposed to manipulation since neither reviews nor editors are automatically screened and purged. To protect articles against vandalism or damage, the stream of reviews can be mined to classify reviews and profile editors in real-time. The goal of this work is to anticipate and explain which reviews to revert. This way, editors are informed why their edits will be reverted. The proposed method employs stream-based processing, updating the profiling and classification models on each incoming event. The profiling uses side and content-based features employing Natural Language Processing, and editor profiles are incrementally updated based on their reviews. Since the proposed method relies on self-explainable classification algorithms, it is possible to understand why a review has been classified as a revert or a non-revert. In addition, this work contributes an algorithm for generating synthetic data for class balancing, making the final classification fairer. The proposed online method was tested with a real data set from Wikivoyage, which was balanced through the aforementioned synthetic data generation. The results attained near-90% values for all evaluation metrics (accuracy, precision, recall, and <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula>-measure).</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Data reliability and fairness</subject><subject>data-stream processing and classification</subject><subject>Electronic publishing</subject><subject>Encyclopedias</subject><subject>Feature extraction</subject><subject>Natural language processing</subject><subject>Real-time systems</subject><subject>Streams</subject><subject>Synthetic data</subject><subject>transparency</subject><subject>Vandalism</subject><subject>wikis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-Aj0EPKfuv2Q3xxKqFgqCVTwuk81EtqbdupsqfntTU6RzmeEx783wI-Sa0SljtLibleV8tZpyysVUCMml4mdkxFlepCIT-fnJfEkmMa5pX7qXMjUiYrHtMOwCdlC1mJQtxOgaZ6Fzfpv4JnlzHy59xi-H38mqCwibeEUuGmgjTo59TF7v5y_lY7p8eliUs2VqhdZdarUuirxSTY1aQ6E1VRVXWQUoa8uxEqDqhgrJACHLc86ZLZQEYEpYbSsmxmQx5NYe1mYX3AbCj_HgzJ_gw7uB0DnboqGS0hoqbillUloGuuC85lDnTUNrpvus2yFrF_znHmNn1n4ftv37hhdUSqa5ov2WGLZs8DEGbP6vMmoOsM0A2xxgmyPs3nUzuBwinjhEllMlxC9gR3mq</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Garcia-Mendez, Silvia</creator><creator>Leal, Fatima</creator><creator>Malheiro, Benedita</creator><creator>Burguillo-Rial, Juan Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9083-4292</orcidid><orcidid>https://orcid.org/0000-0003-0533-1303</orcidid><orcidid>https://orcid.org/0000-0003-4418-2590</orcidid></search><sort><creationdate>20230101</creationdate><title>Interpretable Classification of Wiki-Review Streams</title><author>Garcia-Mendez, Silvia ; Leal, Fatima ; Malheiro, Benedita ; Burguillo-Rial, Juan Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-c88996b7fde88a98807b275bae4dc2eb3a7df0341aea566221c974aa173c8cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Data reliability and fairness</topic><topic>data-stream processing and classification</topic><topic>Electronic publishing</topic><topic>Encyclopedias</topic><topic>Feature extraction</topic><topic>Natural language processing</topic><topic>Real-time systems</topic><topic>Streams</topic><topic>Synthetic data</topic><topic>transparency</topic><topic>Vandalism</topic><topic>wikis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Mendez, Silvia</creatorcontrib><creatorcontrib>Leal, Fatima</creatorcontrib><creatorcontrib>Malheiro, Benedita</creatorcontrib><creatorcontrib>Burguillo-Rial, Juan Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Mendez, Silvia</au><au>Leal, Fatima</au><au>Malheiro, Benedita</au><au>Burguillo-Rial, Juan Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable Classification of Wiki-Review Streams</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>141137</spage><epage>141151</epage><pages>141137-141151</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Wiki articles are created and maintained by a crowd of editors, producing a continuous stream of reviews. Reviews can take the form of additions, reverts, or both. This crowdsourcing model is exposed to manipulation since neither reviews nor editors are automatically screened and purged. To protect articles against vandalism or damage, the stream of reviews can be mined to classify reviews and profile editors in real-time. The goal of this work is to anticipate and explain which reviews to revert. This way, editors are informed why their edits will be reverted. The proposed method employs stream-based processing, updating the profiling and classification models on each incoming event. The profiling uses side and content-based features employing Natural Language Processing, and editor profiles are incrementally updated based on their reviews. Since the proposed method relies on self-explainable classification algorithms, it is possible to understand why a review has been classified as a revert or a non-revert. In addition, this work contributes an algorithm for generating synthetic data for class balancing, making the final classification fairer. The proposed online method was tested with a real data set from Wikivoyage, which was balanced through the aforementioned synthetic data generation. The results attained near-90% values for all evaluation metrics (accuracy, precision, recall, and <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula>-measure).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3342472</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9083-4292</orcidid><orcidid>https://orcid.org/0000-0003-0533-1303</orcidid><orcidid>https://orcid.org/0000-0003-4418-2590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.141137-141151 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2904418270 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Classification Classification algorithms Data reliability and fairness data-stream processing and classification Electronic publishing Encyclopedias Feature extraction Natural language processing Real-time systems Streams Synthetic data transparency Vandalism wikis |
title | Interpretable Classification of Wiki-Review Streams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20Classification%20of%20Wiki-Review%20Streams&rft.jtitle=IEEE%20access&rft.au=Garcia-Mendez,%20Silvia&rft.date=2023-01-01&rft.volume=11&rft.spage=141137&rft.epage=141151&rft.pages=141137-141151&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3342472&rft_dat=%3Cproquest_doaj_%3E2904418270%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904418270&rft_id=info:pmid/&rft_ieee_id=10356073&rft_doaj_id=oai_doaj_org_article_0400dab2c00144c1a8922d2ad6ff0d18&rfr_iscdi=true |