A new representation and shape‐preserving properties of perturbed Bernstein operators

We introduce a new representation of recently introduced perturbed Bernstein operators BnM$$ {B}_n^M $$ in terms of classical Bernstein operators. Using this new representation, we investigate the shape‐preserving properties of the operator BnM$$ {B}_n&#x0005E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-01, Vol.47 (1), p.5-14
Hauptverfasser: Acu, Ana‐Maria, Mutlu, Gökhan, Çekim, Bayram, Yazıcı, Serdal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 5
container_title Mathematical methods in the applied sciences
container_volume 47
creator Acu, Ana‐Maria
Mutlu, Gökhan
Çekim, Bayram
Yazıcı, Serdal
description We introduce a new representation of recently introduced perturbed Bernstein operators BnM$$ {B}_n^M $$ in terms of classical Bernstein operators. Using this new representation, we investigate the shape‐preserving properties of the operator BnM$$ {B}_n^M $$. In particular, we prove that perturbed Bernstein operators preserve monotonicity and convexity of functions for certain cases. On the other hand, we demonstrate with some counterexamples that monotonicity and convexity preserving properties fail in other cases. Moreover, we present some weaker results in these cases.
doi_str_mv 10.1002/mma.9636
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904361544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904361544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-f2a8286e6082b38732ea1eaa347e47105c910a56610b121b7a9bbe66defefa7e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKvgIwS8eNk6k6TJ7rEWq0KLF8VjyLazuqXNrsnW0puP4DP6JO62Xj3NwP_xz_AxdokwQABxs167QaalPmI9hCxLUBl9zHqABhIlUJ2ysxiXAJAiih57HXFPWx6oDhTJN64pK8-dX_D47mr6-freB-Gz9G-8DlVNoSkp8qrg3boJOS34LQUfGyo973LXVCGes5PCrSJd_M0-e5ncPY8fkunT_eN4NE3mIpM6KYRLRapJQypymRopyCE5J5UhZRCG8wzBDbVGyFFgblyW56T1ggoqnCHZZ1eH3va3jw3Fxi6rTfDtSSsyUFLjUKmWuj5Q81DFGKiwdSjXLuwsgu202Vab7bS1aHJAt-WKdv9ydjYb7flfTq5wPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904361544</pqid></control><display><type>article</type><title>A new representation and shape‐preserving properties of perturbed Bernstein operators</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Acu, Ana‐Maria ; Mutlu, Gökhan ; Çekim, Bayram ; Yazıcı, Serdal</creator><creatorcontrib>Acu, Ana‐Maria ; Mutlu, Gökhan ; Çekim, Bayram ; Yazıcı, Serdal</creatorcontrib><description>We introduce a new representation of recently introduced perturbed Bernstein operators BnM$$ {B}_n&amp;amp;amp;amp;#x0005E;M $$ in terms of classical Bernstein operators. Using this new representation, we investigate the shape‐preserving properties of the operator BnM$$ {B}_n&amp;amp;amp;amp;#x0005E;M $$. In particular, we prove that perturbed Bernstein operators preserve monotonicity and convexity of functions for certain cases. On the other hand, we demonstrate with some counterexamples that monotonicity and convexity preserving properties fail in other cases. Moreover, we present some weaker results in these cases.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9636</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Bernstein operators ; computer graphics ; computer‐aided design ; Convexity ; Operators ; Representations ; shape‐preserving properties</subject><ispartof>Mathematical methods in the applied sciences, 2024-01, Vol.47 (1), p.5-14</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-f2a8286e6082b38732ea1eaa347e47105c910a56610b121b7a9bbe66defefa7e3</citedby><cites>FETCH-LOGICAL-c2936-f2a8286e6082b38732ea1eaa347e47105c910a56610b121b7a9bbe66defefa7e3</cites><orcidid>0000-0003-1192-2281 ; 0000-0002-0674-2908 ; 0000-0002-5363-2453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9636$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9636$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Acu, Ana‐Maria</creatorcontrib><creatorcontrib>Mutlu, Gökhan</creatorcontrib><creatorcontrib>Çekim, Bayram</creatorcontrib><creatorcontrib>Yazıcı, Serdal</creatorcontrib><title>A new representation and shape‐preserving properties of perturbed Bernstein operators</title><title>Mathematical methods in the applied sciences</title><description>We introduce a new representation of recently introduced perturbed Bernstein operators BnM$$ {B}_n&amp;amp;amp;amp;#x0005E;M $$ in terms of classical Bernstein operators. Using this new representation, we investigate the shape‐preserving properties of the operator BnM$$ {B}_n&amp;amp;amp;amp;#x0005E;M $$. In particular, we prove that perturbed Bernstein operators preserve monotonicity and convexity of functions for certain cases. On the other hand, we demonstrate with some counterexamples that monotonicity and convexity preserving properties fail in other cases. Moreover, we present some weaker results in these cases.</description><subject>Bernstein operators</subject><subject>computer graphics</subject><subject>computer‐aided design</subject><subject>Convexity</subject><subject>Operators</subject><subject>Representations</subject><subject>shape‐preserving properties</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKvgIwS8eNk6k6TJ7rEWq0KLF8VjyLazuqXNrsnW0puP4DP6JO62Xj3NwP_xz_AxdokwQABxs167QaalPmI9hCxLUBl9zHqABhIlUJ2ysxiXAJAiih57HXFPWx6oDhTJN64pK8-dX_D47mr6-freB-Gz9G-8DlVNoSkp8qrg3boJOS34LQUfGyo973LXVCGes5PCrSJd_M0-e5ncPY8fkunT_eN4NE3mIpM6KYRLRapJQypymRopyCE5J5UhZRCG8wzBDbVGyFFgblyW56T1ggoqnCHZZ1eH3va3jw3Fxi6rTfDtSSsyUFLjUKmWuj5Q81DFGKiwdSjXLuwsgu202Vab7bS1aHJAt-WKdv9ydjYb7flfTq5wPA</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Acu, Ana‐Maria</creator><creator>Mutlu, Gökhan</creator><creator>Çekim, Bayram</creator><creator>Yazıcı, Serdal</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1192-2281</orcidid><orcidid>https://orcid.org/0000-0002-0674-2908</orcidid><orcidid>https://orcid.org/0000-0002-5363-2453</orcidid></search><sort><creationdate>20240115</creationdate><title>A new representation and shape‐preserving properties of perturbed Bernstein operators</title><author>Acu, Ana‐Maria ; Mutlu, Gökhan ; Çekim, Bayram ; Yazıcı, Serdal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-f2a8286e6082b38732ea1eaa347e47105c910a56610b121b7a9bbe66defefa7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bernstein operators</topic><topic>computer graphics</topic><topic>computer‐aided design</topic><topic>Convexity</topic><topic>Operators</topic><topic>Representations</topic><topic>shape‐preserving properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acu, Ana‐Maria</creatorcontrib><creatorcontrib>Mutlu, Gökhan</creatorcontrib><creatorcontrib>Çekim, Bayram</creatorcontrib><creatorcontrib>Yazıcı, Serdal</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acu, Ana‐Maria</au><au>Mutlu, Gökhan</au><au>Çekim, Bayram</au><au>Yazıcı, Serdal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new representation and shape‐preserving properties of perturbed Bernstein operators</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-01-15</date><risdate>2024</risdate><volume>47</volume><issue>1</issue><spage>5</spage><epage>14</epage><pages>5-14</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We introduce a new representation of recently introduced perturbed Bernstein operators BnM$$ {B}_n&amp;amp;amp;amp;#x0005E;M $$ in terms of classical Bernstein operators. Using this new representation, we investigate the shape‐preserving properties of the operator BnM$$ {B}_n&amp;amp;amp;amp;#x0005E;M $$. In particular, we prove that perturbed Bernstein operators preserve monotonicity and convexity of functions for certain cases. On the other hand, we demonstrate with some counterexamples that monotonicity and convexity preserving properties fail in other cases. Moreover, we present some weaker results in these cases.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9636</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1192-2281</orcidid><orcidid>https://orcid.org/0000-0002-0674-2908</orcidid><orcidid>https://orcid.org/0000-0002-5363-2453</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-01, Vol.47 (1), p.5-14
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2904361544
source Wiley Online Library Journals Frontfile Complete
subjects Bernstein operators
computer graphics
computer‐aided design
Convexity
Operators
Representations
shape‐preserving properties
title A new representation and shape‐preserving properties of perturbed Bernstein operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20representation%20and%20shape%E2%80%90preserving%20properties%20of%20perturbed%20Bernstein%20operators&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Acu,%20Ana%E2%80%90Maria&rft.date=2024-01-15&rft.volume=47&rft.issue=1&rft.spage=5&rft.epage=14&rft.pages=5-14&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9636&rft_dat=%3Cproquest_cross%3E2904361544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904361544&rft_id=info:pmid/&rfr_iscdi=true