Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems
The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐di...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-01, Vol.47 (1), p.451-474 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474 |
---|---|
container_issue | 1 |
container_start_page | 451 |
container_title | Mathematical methods in the applied sciences |
container_volume | 47 |
creator | Liu, Jia Rebholz, Leo G. Xiao, Mengying |
description | The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham. |
doi_str_mv | 10.1002/mma.9665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904361242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904361242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-4481f033a4bccd7dca7fffb03d2a8c1a9b600781ed1fe74a1f2ce8c14a3663e63</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5q-ZmWUptQotbnQdMslNScn8mEwr3fkIPqNP4tS6dXUX9-McOAjdUjKhhLCHutaTUsrpGRpRUpYZFbk8RyNCc5IJRsUlukppSwgpKGUjpBbOeeOh6bFuLAbnwPR-D1iHDVRRe4NTF3zf-2bz_flV6QQWpzbsISbs2oibtgm-AR1x0tYGwF3rh7AutlWAOl2jC6dDgpu_O0Zvj4vX-VO2elk-z2erzHCWTzMhCuoI51pUxtjcGp075yrCLdOFobqsJCF5QcFSB7nQ1DEDw0NoLiUHycfo7pQ7FL_vIPVq2-5iM1QqVhLBJWWCDer-pExsU4rgVBd9reNBUaKO86lhPnWcb6DZiX74AId_nVqvZ7_-B620c50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904361242</pqid></control><display><type>article</type><title>Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems</title><source>Wiley Online Library All Journals</source><creator>Liu, Jia ; Rebholz, Leo G. ; Xiao, Mengying</creator><creatorcontrib>Liu, Jia ; Rebholz, Leo G. ; Xiao, Mengying</creatorcontrib><description>The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9665</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algebra ; algebraic splitting method for saddle point problems ; Anderson acceleration ; Bingham problem ; Convergence ; finite element method ; Fluid flow ; Iterative methods ; Navier-Stokes equations ; numerical methods for PDE ; Saddle points ; Solvers ; Splitting</subject><ispartof>Mathematical methods in the applied sciences, 2024-01, Vol.47 (1), p.451-474</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-4481f033a4bccd7dca7fffb03d2a8c1a9b600781ed1fe74a1f2ce8c14a3663e63</citedby><cites>FETCH-LOGICAL-c3275-4481f033a4bccd7dca7fffb03d2a8c1a9b600781ed1fe74a1f2ce8c14a3663e63</cites><orcidid>0000-0003-1181-052X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9665$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9665$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Rebholz, Leo G.</creatorcontrib><creatorcontrib>Xiao, Mengying</creatorcontrib><title>Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems</title><title>Mathematical methods in the applied sciences</title><description>The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham.</description><subject>Algebra</subject><subject>algebraic splitting method for saddle point problems</subject><subject>Anderson acceleration</subject><subject>Bingham problem</subject><subject>Convergence</subject><subject>finite element method</subject><subject>Fluid flow</subject><subject>Iterative methods</subject><subject>Navier-Stokes equations</subject><subject>numerical methods for PDE</subject><subject>Saddle points</subject><subject>Solvers</subject><subject>Splitting</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5q-ZmWUptQotbnQdMslNScn8mEwr3fkIPqNP4tS6dXUX9-McOAjdUjKhhLCHutaTUsrpGRpRUpYZFbk8RyNCc5IJRsUlukppSwgpKGUjpBbOeeOh6bFuLAbnwPR-D1iHDVRRe4NTF3zf-2bz_flV6QQWpzbsISbs2oibtgm-AR1x0tYGwF3rh7AutlWAOl2jC6dDgpu_O0Zvj4vX-VO2elk-z2erzHCWTzMhCuoI51pUxtjcGp075yrCLdOFobqsJCF5QcFSB7nQ1DEDw0NoLiUHycfo7pQ7FL_vIPVq2-5iM1QqVhLBJWWCDer-pExsU4rgVBd9reNBUaKO86lhPnWcb6DZiX74AId_nVqvZ7_-B620c50</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Liu, Jia</creator><creator>Rebholz, Leo G.</creator><creator>Xiao, Mengying</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1181-052X</orcidid></search><sort><creationdate>20240115</creationdate><title>Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems</title><author>Liu, Jia ; Rebholz, Leo G. ; Xiao, Mengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-4481f033a4bccd7dca7fffb03d2a8c1a9b600781ed1fe74a1f2ce8c14a3663e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>algebraic splitting method for saddle point problems</topic><topic>Anderson acceleration</topic><topic>Bingham problem</topic><topic>Convergence</topic><topic>finite element method</topic><topic>Fluid flow</topic><topic>Iterative methods</topic><topic>Navier-Stokes equations</topic><topic>numerical methods for PDE</topic><topic>Saddle points</topic><topic>Solvers</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Rebholz, Leo G.</creatorcontrib><creatorcontrib>Xiao, Mengying</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jia</au><au>Rebholz, Leo G.</au><au>Xiao, Mengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-01-15</date><risdate>2024</risdate><volume>47</volume><issue>1</issue><spage>451</spage><epage>474</epage><pages>451-474</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9665</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1181-052X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2024-01, Vol.47 (1), p.451-474 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2904361242 |
source | Wiley Online Library All Journals |
subjects | Algebra algebraic splitting method for saddle point problems Anderson acceleration Bingham problem Convergence finite element method Fluid flow Iterative methods Navier-Stokes equations numerical methods for PDE Saddle points Solvers Splitting |
title | Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20effective%20algebraic%20splitting%E2%80%90based%20solvers%20for%20nonlinear%20saddle%20point%20problems&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Liu,%20Jia&rft.date=2024-01-15&rft.volume=47&rft.issue=1&rft.spage=451&rft.epage=474&rft.pages=451-474&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9665&rft_dat=%3Cproquest_cross%3E2904361242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904361242&rft_id=info:pmid/&rfr_iscdi=true |