Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems

The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-01, Vol.47 (1), p.451-474
Hauptverfasser: Liu, Jia, Rebholz, Leo G., Xiao, Mengying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 1
container_start_page 451
container_title Mathematical methods in the applied sciences
container_volume 47
creator Liu, Jia
Rebholz, Leo G.
Xiao, Mengying
description The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham.
doi_str_mv 10.1002/mma.9665
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904361242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904361242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-4481f033a4bccd7dca7fffb03d2a8c1a9b600781ed1fe74a1f2ce8c14a3663e63</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5q-ZmWUptQotbnQdMslNScn8mEwr3fkIPqNP4tS6dXUX9-McOAjdUjKhhLCHutaTUsrpGRpRUpYZFbk8RyNCc5IJRsUlukppSwgpKGUjpBbOeeOh6bFuLAbnwPR-D1iHDVRRe4NTF3zf-2bz_flV6QQWpzbsISbs2oibtgm-AR1x0tYGwF3rh7AutlWAOl2jC6dDgpu_O0Zvj4vX-VO2elk-z2erzHCWTzMhCuoI51pUxtjcGp075yrCLdOFobqsJCF5QcFSB7nQ1DEDw0NoLiUHycfo7pQ7FL_vIPVq2-5iM1QqVhLBJWWCDer-pExsU4rgVBd9reNBUaKO86lhPnWcb6DZiX74AId_nVqvZ7_-B620c50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904361242</pqid></control><display><type>article</type><title>Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems</title><source>Wiley Online Library All Journals</source><creator>Liu, Jia ; Rebholz, Leo G. ; Xiao, Mengying</creator><creatorcontrib>Liu, Jia ; Rebholz, Leo G. ; Xiao, Mengying</creatorcontrib><description>The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9665</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algebra ; algebraic splitting method for saddle point problems ; Anderson acceleration ; Bingham problem ; Convergence ; finite element method ; Fluid flow ; Iterative methods ; Navier-Stokes equations ; numerical methods for PDE ; Saddle points ; Solvers ; Splitting</subject><ispartof>Mathematical methods in the applied sciences, 2024-01, Vol.47 (1), p.451-474</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-4481f033a4bccd7dca7fffb03d2a8c1a9b600781ed1fe74a1f2ce8c14a3663e63</citedby><cites>FETCH-LOGICAL-c3275-4481f033a4bccd7dca7fffb03d2a8c1a9b600781ed1fe74a1f2ce8c14a3663e63</cites><orcidid>0000-0003-1181-052X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9665$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9665$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Rebholz, Leo G.</creatorcontrib><creatorcontrib>Xiao, Mengying</creatorcontrib><title>Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems</title><title>Mathematical methods in the applied sciences</title><description>The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham.</description><subject>Algebra</subject><subject>algebraic splitting method for saddle point problems</subject><subject>Anderson acceleration</subject><subject>Bingham problem</subject><subject>Convergence</subject><subject>finite element method</subject><subject>Fluid flow</subject><subject>Iterative methods</subject><subject>Navier-Stokes equations</subject><subject>numerical methods for PDE</subject><subject>Saddle points</subject><subject>Solvers</subject><subject>Splitting</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5q-ZmWUptQotbnQdMslNScn8mEwr3fkIPqNP4tS6dXUX9-McOAjdUjKhhLCHutaTUsrpGRpRUpYZFbk8RyNCc5IJRsUlukppSwgpKGUjpBbOeeOh6bFuLAbnwPR-D1iHDVRRe4NTF3zf-2bz_flV6QQWpzbsISbs2oibtgm-AR1x0tYGwF3rh7AutlWAOl2jC6dDgpu_O0Zvj4vX-VO2elk-z2erzHCWTzMhCuoI51pUxtjcGp075yrCLdOFobqsJCF5QcFSB7nQ1DEDw0NoLiUHycfo7pQ7FL_vIPVq2-5iM1QqVhLBJWWCDer-pExsU4rgVBd9reNBUaKO86lhPnWcb6DZiX74AId_nVqvZ7_-B620c50</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Liu, Jia</creator><creator>Rebholz, Leo G.</creator><creator>Xiao, Mengying</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1181-052X</orcidid></search><sort><creationdate>20240115</creationdate><title>Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems</title><author>Liu, Jia ; Rebholz, Leo G. ; Xiao, Mengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-4481f033a4bccd7dca7fffb03d2a8c1a9b600781ed1fe74a1f2ce8c14a3663e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>algebraic splitting method for saddle point problems</topic><topic>Anderson acceleration</topic><topic>Bingham problem</topic><topic>Convergence</topic><topic>finite element method</topic><topic>Fluid flow</topic><topic>Iterative methods</topic><topic>Navier-Stokes equations</topic><topic>numerical methods for PDE</topic><topic>Saddle points</topic><topic>Solvers</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Rebholz, Leo G.</creatorcontrib><creatorcontrib>Xiao, Mengying</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jia</au><au>Rebholz, Leo G.</au><au>Xiao, Mengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-01-15</date><risdate>2024</risdate><volume>47</volume><issue>1</issue><spage>451</spage><epage>474</epage><pages>451-474</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9665</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1181-052X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-01, Vol.47 (1), p.451-474
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2904361242
source Wiley Online Library All Journals
subjects Algebra
algebraic splitting method for saddle point problems
Anderson acceleration
Bingham problem
Convergence
finite element method
Fluid flow
Iterative methods
Navier-Stokes equations
numerical methods for PDE
Saddle points
Solvers
Splitting
title Efficient and effective algebraic splitting‐based solvers for nonlinear saddle point problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20effective%20algebraic%20splitting%E2%80%90based%20solvers%20for%20nonlinear%20saddle%20point%20problems&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Liu,%20Jia&rft.date=2024-01-15&rft.volume=47&rft.issue=1&rft.spage=451&rft.epage=474&rft.pages=451-474&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9665&rft_dat=%3Cproquest_cross%3E2904361242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904361242&rft_id=info:pmid/&rfr_iscdi=true