Survey of Hallucination in Natural Language Generation
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2023-03, Vol.55 (12), p.1-38, Article 248 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 55 |
creator | Ji, Ziwei Lee, Nayeon Frieske, Rita Yu, Tiezheng Su, Dan Xu, Yan Ishii, Etsuko Bang, Ye Jin Madotto, Andrea Fung, Pascale |
description | Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation, and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before.In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions, and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, and machine translation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG. |
doi_str_mv | 10.1145/3571730 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904251282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904251282</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-c0469dffef2e8745968a319e2950c036748a80e6a9bd989176fa487e5c9b84223</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuBFFKxVvHsKePAUnf3ePUrRVgh6UM9hut0tKemmbhKh_97UVE9zeB9mhpeQawr3lAr5wKWmmsMJmVApda65oKdkAlxBDhzgnFy07QYAmKBqQtR7n779PmtCtsC67l0VsauamFUxe8WuT1hnBcZ1j2ufzX306Te-JGcB69ZfHeeUfD4_fcwWefE2f5k9FjlyTbvcgVB2FYIPzBstpFUGObWeWQlueEkLgwa8QrtcWWOpVgGF0V46uzSCMT4lt-PeXWq-et925abpUxxOlsyCYJIyc1B3o3KpadvkQ7lL1RbTvqRQHkopj6UM8maU6Lb_6C_8AVaVWXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904251282</pqid></control><display><type>article</type><title>Survey of Hallucination in Natural Language Generation</title><source>ACM Digital Library Complete</source><creator>Ji, Ziwei ; Lee, Nayeon ; Frieske, Rita ; Yu, Tiezheng ; Su, Dan ; Xu, Yan ; Ishii, Etsuko ; Bang, Ye Jin ; Madotto, Andrea ; Fung, Pascale</creator><creatorcontrib>Ji, Ziwei ; Lee, Nayeon ; Frieske, Rita ; Yu, Tiezheng ; Su, Dan ; Xu, Yan ; Ishii, Etsuko ; Bang, Ye Jin ; Madotto, Andrea ; Fung, Pascale</creatorcontrib><description>Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation, and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before.In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions, and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, and machine translation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3571730</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computer science ; Computing methodologies ; Deep learning ; Hallucinations ; Machine translation ; Natural language ; Natural language generation ; Natural language processing ; Neural networks ; Speech recognition ; Texts</subject><ispartof>ACM computing surveys, 2023-03, Vol.55 (12), p.1-38, Article 248</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><rights>Copyright Association for Computing Machinery Dec 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-c0469dffef2e8745968a319e2950c036748a80e6a9bd989176fa487e5c9b84223</citedby><cites>FETCH-LOGICAL-a371t-c0469dffef2e8745968a319e2950c036748a80e6a9bd989176fa487e5c9b84223</cites><orcidid>0000-0002-6423-539X ; 0000-0002-8672-715X ; 0000-0001-5396-950X ; 0000-0003-2205-2429 ; 0000-0001-5746-9545 ; 0000-0002-3921-3519 ; 0000-0002-0206-7861 ; 0000-0002-2968-0033 ; 0000-0002-0628-7132 ; 0000-0003-1144-1103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3571730$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Ji, Ziwei</creatorcontrib><creatorcontrib>Lee, Nayeon</creatorcontrib><creatorcontrib>Frieske, Rita</creatorcontrib><creatorcontrib>Yu, Tiezheng</creatorcontrib><creatorcontrib>Su, Dan</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Ishii, Etsuko</creatorcontrib><creatorcontrib>Bang, Ye Jin</creatorcontrib><creatorcontrib>Madotto, Andrea</creatorcontrib><creatorcontrib>Fung, Pascale</creatorcontrib><title>Survey of Hallucination in Natural Language Generation</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation, and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before.In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions, and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, and machine translation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.</description><subject>Computer science</subject><subject>Computing methodologies</subject><subject>Deep learning</subject><subject>Hallucinations</subject><subject>Machine translation</subject><subject>Natural language</subject><subject>Natural language generation</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Speech recognition</subject><subject>Texts</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQBuBFFKxVvHsKePAUnf3ePUrRVgh6UM9hut0tKemmbhKh_97UVE9zeB9mhpeQawr3lAr5wKWmmsMJmVApda65oKdkAlxBDhzgnFy07QYAmKBqQtR7n779PmtCtsC67l0VsauamFUxe8WuT1hnBcZ1j2ufzX306Te-JGcB69ZfHeeUfD4_fcwWefE2f5k9FjlyTbvcgVB2FYIPzBstpFUGObWeWQlueEkLgwa8QrtcWWOpVgGF0V46uzSCMT4lt-PeXWq-et925abpUxxOlsyCYJIyc1B3o3KpadvkQ7lL1RbTvqRQHkopj6UM8maU6Lb_6C_8AVaVWXo</recordid><startdate>20230303</startdate><enddate>20230303</enddate><creator>Ji, Ziwei</creator><creator>Lee, Nayeon</creator><creator>Frieske, Rita</creator><creator>Yu, Tiezheng</creator><creator>Su, Dan</creator><creator>Xu, Yan</creator><creator>Ishii, Etsuko</creator><creator>Bang, Ye Jin</creator><creator>Madotto, Andrea</creator><creator>Fung, Pascale</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6423-539X</orcidid><orcidid>https://orcid.org/0000-0002-8672-715X</orcidid><orcidid>https://orcid.org/0000-0001-5396-950X</orcidid><orcidid>https://orcid.org/0000-0003-2205-2429</orcidid><orcidid>https://orcid.org/0000-0001-5746-9545</orcidid><orcidid>https://orcid.org/0000-0002-3921-3519</orcidid><orcidid>https://orcid.org/0000-0002-0206-7861</orcidid><orcidid>https://orcid.org/0000-0002-2968-0033</orcidid><orcidid>https://orcid.org/0000-0002-0628-7132</orcidid><orcidid>https://orcid.org/0000-0003-1144-1103</orcidid></search><sort><creationdate>20230303</creationdate><title>Survey of Hallucination in Natural Language Generation</title><author>Ji, Ziwei ; Lee, Nayeon ; Frieske, Rita ; Yu, Tiezheng ; Su, Dan ; Xu, Yan ; Ishii, Etsuko ; Bang, Ye Jin ; Madotto, Andrea ; Fung, Pascale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-c0469dffef2e8745968a319e2950c036748a80e6a9bd989176fa487e5c9b84223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer science</topic><topic>Computing methodologies</topic><topic>Deep learning</topic><topic>Hallucinations</topic><topic>Machine translation</topic><topic>Natural language</topic><topic>Natural language generation</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Speech recognition</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Ziwei</creatorcontrib><creatorcontrib>Lee, Nayeon</creatorcontrib><creatorcontrib>Frieske, Rita</creatorcontrib><creatorcontrib>Yu, Tiezheng</creatorcontrib><creatorcontrib>Su, Dan</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Ishii, Etsuko</creatorcontrib><creatorcontrib>Bang, Ye Jin</creatorcontrib><creatorcontrib>Madotto, Andrea</creatorcontrib><creatorcontrib>Fung, Pascale</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Ziwei</au><au>Lee, Nayeon</au><au>Frieske, Rita</au><au>Yu, Tiezheng</au><au>Su, Dan</au><au>Xu, Yan</au><au>Ishii, Etsuko</au><au>Bang, Ye Jin</au><au>Madotto, Andrea</au><au>Fung, Pascale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey of Hallucination in Natural Language Generation</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2023-03-03</date><risdate>2023</risdate><volume>55</volume><issue>12</issue><spage>1</spage><epage>38</epage><pages>1-38</pages><artnum>248</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation, and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before.In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions, and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, and machine translation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3571730</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-6423-539X</orcidid><orcidid>https://orcid.org/0000-0002-8672-715X</orcidid><orcidid>https://orcid.org/0000-0001-5396-950X</orcidid><orcidid>https://orcid.org/0000-0003-2205-2429</orcidid><orcidid>https://orcid.org/0000-0001-5746-9545</orcidid><orcidid>https://orcid.org/0000-0002-3921-3519</orcidid><orcidid>https://orcid.org/0000-0002-0206-7861</orcidid><orcidid>https://orcid.org/0000-0002-2968-0033</orcidid><orcidid>https://orcid.org/0000-0002-0628-7132</orcidid><orcidid>https://orcid.org/0000-0003-1144-1103</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2023-03, Vol.55 (12), p.1-38, Article 248 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_2904251282 |
source | ACM Digital Library Complete |
subjects | Computer science Computing methodologies Deep learning Hallucinations Machine translation Natural language Natural language generation Natural language processing Neural networks Speech recognition Texts |
title | Survey of Hallucination in Natural Language Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20of%20Hallucination%20in%20Natural%20Language%20Generation&rft.jtitle=ACM%20computing%20surveys&rft.au=Ji,%20Ziwei&rft.date=2023-03-03&rft.volume=55&rft.issue=12&rft.spage=1&rft.epage=38&rft.pages=1-38&rft.artnum=248&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3571730&rft_dat=%3Cproquest_cross%3E2904251282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904251282&rft_id=info:pmid/&rfr_iscdi=true |