Natural break-up and satellite formation regimes of surfactant-laden liquid threads
We report a numerical analysis of the unforced break-up of free cylindrical threads of viscous Newtonian liquid whose interface is coated with insoluble surfactants, focusing on the formation of satellite droplets. The initial conditions are harmonic disturbances of the cylindrical shape with a smal...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-01, Vol.883, Article A35 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 883 |
creator | Martínez-Calvo, A. Rivero-Rodríguez, J. Scheid, B. Sevilla, A. |
description | We report a numerical analysis of the unforced break-up of free cylindrical threads of viscous Newtonian liquid whose interface is coated with insoluble surfactants, focusing on the formation of satellite droplets. The initial conditions are harmonic disturbances of the cylindrical shape with a small amplitude
$\unicode[STIX]{x1D716}$
, and whose wavelength is the most unstable one deduced from linear stability theory. We demonstrate that, in the limit
$\unicode[STIX]{x1D716}\rightarrow 0$
, the problem depends on two dimensionless parameters, namely the Laplace number,
$La=\unicode[STIX]{x1D70C}\unicode[STIX]{x1D70E}_{0}\bar{R}/\unicode[STIX]{x1D707}^{2}$
, and the elasticity parameter,
$\unicode[STIX]{x1D6FD}=E/\unicode[STIX]{x1D70E}_{0}$
, where
$\unicode[STIX]{x1D70C}$
,
$\unicode[STIX]{x1D707}$
and
$\unicode[STIX]{x1D70E}_{0}$
are the liquid density, viscosity and initial surface tension, respectively,
$E$
is the Gibbs elasticity and
$\bar{R}$
is the unperturbed thread radius. A parametric study is presented to quantify the influence of
$La$
and
$\unicode[STIX]{x1D6FD}$
on two key quantities: the satellite droplet volume and the mass of surfactant trapped at the satellite’s surface just prior to pinch-off,
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
, respectively. We identify a weak-elasticity regime,
$\unicode[STIX]{x1D6FD}\lesssim 0.05$
, in which the satellite volume and the associated mass of surfactant obey the scaling law
$V_{sat}=\unicode[STIX]{x1D6F4}_{sat}=0.0042La^{1.64}$
for
$La\lesssim 2$
. For
$La\gtrsim 10$
,
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
reach a plateau of about
$3\,\%$
and
$2.9\,\%$
, respectively,
$V_{sat}$
being in close agreement with previous experiments of low-viscosity threads with clean interfaces. For
$La |
doi_str_mv | 10.1017/jfm.2019.874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904180183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904180183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-722fac691c433be1cacd489c3ed8196ec55168978457ae9e3b2851e5d5ed43cf3</originalsourceid><addsrcrecordid>eNotkL1OwzAYRS0EEqWw8QCWWEnxZzuJPaKKP6mCAZgt1_4MKfmr7Qy8PanKdJejc6VDyDWwFTCo73ahW3EGeqVqeUIWICtd1JUsT8mCMc4LAM7OyUVKO8ZAMF0vyPurzVO0Ld1GtD_FNFLbe5psxrZtMtIwxM7mZuhpxK-mw0SHQNMUg3XZ9rlorceets1-ajzN37PEp0tyFmyb8Op_l-Tz8eFj_Vxs3p5e1vebwvFK5KLmfLZUGpwUYovgrPNSaSfQK9AVurKESulaybK2qFFsuSoBS1-il8IFsSQ3R-8Yh_2EKZvdMMV-vjRcMwmKgRIzdXukXBxSihjMGJvOxl8DzByymTmbOWQzczbxBzcbYQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904180183</pqid></control><display><type>article</type><title>Natural break-up and satellite formation regimes of surfactant-laden liquid threads</title><source>Cambridge University Press Journals Complete</source><creator>Martínez-Calvo, A. ; Rivero-Rodríguez, J. ; Scheid, B. ; Sevilla, A.</creator><creatorcontrib>Martínez-Calvo, A. ; Rivero-Rodríguez, J. ; Scheid, B. ; Sevilla, A.</creatorcontrib><description>We report a numerical analysis of the unforced break-up of free cylindrical threads of viscous Newtonian liquid whose interface is coated with insoluble surfactants, focusing on the formation of satellite droplets. The initial conditions are harmonic disturbances of the cylindrical shape with a small amplitude
$\unicode[STIX]{x1D716}$
, and whose wavelength is the most unstable one deduced from linear stability theory. We demonstrate that, in the limit
$\unicode[STIX]{x1D716}\rightarrow 0$
, the problem depends on two dimensionless parameters, namely the Laplace number,
$La=\unicode[STIX]{x1D70C}\unicode[STIX]{x1D70E}_{0}\bar{R}/\unicode[STIX]{x1D707}^{2}$
, and the elasticity parameter,
$\unicode[STIX]{x1D6FD}=E/\unicode[STIX]{x1D70E}_{0}$
, where
$\unicode[STIX]{x1D70C}$
,
$\unicode[STIX]{x1D707}$
and
$\unicode[STIX]{x1D70E}_{0}$
are the liquid density, viscosity and initial surface tension, respectively,
$E$
is the Gibbs elasticity and
$\bar{R}$
is the unperturbed thread radius. A parametric study is presented to quantify the influence of
$La$
and
$\unicode[STIX]{x1D6FD}$
on two key quantities: the satellite droplet volume and the mass of surfactant trapped at the satellite’s surface just prior to pinch-off,
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
, respectively. We identify a weak-elasticity regime,
$\unicode[STIX]{x1D6FD}\lesssim 0.05$
, in which the satellite volume and the associated mass of surfactant obey the scaling law
$V_{sat}=\unicode[STIX]{x1D6F4}_{sat}=0.0042La^{1.64}$
for
$La\lesssim 2$
. For
$La\gtrsim 10$
,
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
reach a plateau of about
$3\,\%$
and
$2.9\,\%$
, respectively,
$V_{sat}$
being in close agreement with previous experiments of low-viscosity threads with clean interfaces. For
$La<7.5$
, we reveal the existence of a discontinuous transition in
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
at a critical elasticity,
$\unicode[STIX]{x1D6FD}_{c}(La)$
, with
$\unicode[STIX]{x1D6FD}_{c}\rightarrow 0.98$
for
$La\lesssim 0.2$
, such that
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
abruptly increase at
$\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{c}$
for increasing
$\unicode[STIX]{x1D6FD}$
. The jumps experienced by both quantities reach a plateau when
$La\lesssim 0.2$
, while they decrease monotonically as
$La$
increases up to
$La=7.5$
, where both become zero.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.874</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Approximation ; Aquatic reptiles ; Droplets ; Elasticity ; Experiments ; Initial conditions ; Interfaces ; Newtonian liquids ; Numerical analysis ; Parameters ; Reynolds number ; Satellites ; Scaling ; Scaling laws ; Simulation ; Strutt, John William (Lord Rayleigh) (1842-1919) ; Surface tension ; Surfactants ; Viscosity ; Wavelength</subject><ispartof>Journal of fluid mechanics, 2020-01, Vol.883, Article A35</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-722fac691c433be1cacd489c3ed8196ec55168978457ae9e3b2851e5d5ed43cf3</citedby><cites>FETCH-LOGICAL-c263t-722fac691c433be1cacd489c3ed8196ec55168978457ae9e3b2851e5d5ed43cf3</cites><orcidid>0000-0001-7268-581X ; 0000-0003-0916-0505 ; 0000-0001-9749-2520 ; 0000-0002-2109-8145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Martínez-Calvo, A.</creatorcontrib><creatorcontrib>Rivero-Rodríguez, J.</creatorcontrib><creatorcontrib>Scheid, B.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><title>Natural break-up and satellite formation regimes of surfactant-laden liquid threads</title><title>Journal of fluid mechanics</title><description>We report a numerical analysis of the unforced break-up of free cylindrical threads of viscous Newtonian liquid whose interface is coated with insoluble surfactants, focusing on the formation of satellite droplets. The initial conditions are harmonic disturbances of the cylindrical shape with a small amplitude
$\unicode[STIX]{x1D716}$
, and whose wavelength is the most unstable one deduced from linear stability theory. We demonstrate that, in the limit
$\unicode[STIX]{x1D716}\rightarrow 0$
, the problem depends on two dimensionless parameters, namely the Laplace number,
$La=\unicode[STIX]{x1D70C}\unicode[STIX]{x1D70E}_{0}\bar{R}/\unicode[STIX]{x1D707}^{2}$
, and the elasticity parameter,
$\unicode[STIX]{x1D6FD}=E/\unicode[STIX]{x1D70E}_{0}$
, where
$\unicode[STIX]{x1D70C}$
,
$\unicode[STIX]{x1D707}$
and
$\unicode[STIX]{x1D70E}_{0}$
are the liquid density, viscosity and initial surface tension, respectively,
$E$
is the Gibbs elasticity and
$\bar{R}$
is the unperturbed thread radius. A parametric study is presented to quantify the influence of
$La$
and
$\unicode[STIX]{x1D6FD}$
on two key quantities: the satellite droplet volume and the mass of surfactant trapped at the satellite’s surface just prior to pinch-off,
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
, respectively. We identify a weak-elasticity regime,
$\unicode[STIX]{x1D6FD}\lesssim 0.05$
, in which the satellite volume and the associated mass of surfactant obey the scaling law
$V_{sat}=\unicode[STIX]{x1D6F4}_{sat}=0.0042La^{1.64}$
for
$La\lesssim 2$
. For
$La\gtrsim 10$
,
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
reach a plateau of about
$3\,\%$
and
$2.9\,\%$
, respectively,
$V_{sat}$
being in close agreement with previous experiments of low-viscosity threads with clean interfaces. For
$La<7.5$
, we reveal the existence of a discontinuous transition in
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
at a critical elasticity,
$\unicode[STIX]{x1D6FD}_{c}(La)$
, with
$\unicode[STIX]{x1D6FD}_{c}\rightarrow 0.98$
for
$La\lesssim 0.2$
, such that
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
abruptly increase at
$\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{c}$
for increasing
$\unicode[STIX]{x1D6FD}$
. The jumps experienced by both quantities reach a plateau when
$La\lesssim 0.2$
, while they decrease monotonically as
$La$
increases up to
$La=7.5$
, where both become zero.</description><subject>Approximation</subject><subject>Aquatic reptiles</subject><subject>Droplets</subject><subject>Elasticity</subject><subject>Experiments</subject><subject>Initial conditions</subject><subject>Interfaces</subject><subject>Newtonian liquids</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Reynolds number</subject><subject>Satellites</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Simulation</subject><subject>Strutt, John William (Lord Rayleigh) (1842-1919)</subject><subject>Surface tension</subject><subject>Surfactants</subject><subject>Viscosity</subject><subject>Wavelength</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkL1OwzAYRS0EEqWw8QCWWEnxZzuJPaKKP6mCAZgt1_4MKfmr7Qy8PanKdJejc6VDyDWwFTCo73ahW3EGeqVqeUIWICtd1JUsT8mCMc4LAM7OyUVKO8ZAMF0vyPurzVO0Ld1GtD_FNFLbe5psxrZtMtIwxM7mZuhpxK-mw0SHQNMUg3XZ9rlorceets1-ajzN37PEp0tyFmyb8Op_l-Tz8eFj_Vxs3p5e1vebwvFK5KLmfLZUGpwUYovgrPNSaSfQK9AVurKESulaybK2qFFsuSoBS1-il8IFsSQ3R-8Yh_2EKZvdMMV-vjRcMwmKgRIzdXukXBxSihjMGJvOxl8DzByymTmbOWQzczbxBzcbYQE</recordid><startdate>20200125</startdate><enddate>20200125</enddate><creator>Martínez-Calvo, A.</creator><creator>Rivero-Rodríguez, J.</creator><creator>Scheid, B.</creator><creator>Sevilla, A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7268-581X</orcidid><orcidid>https://orcid.org/0000-0003-0916-0505</orcidid><orcidid>https://orcid.org/0000-0001-9749-2520</orcidid><orcidid>https://orcid.org/0000-0002-2109-8145</orcidid></search><sort><creationdate>20200125</creationdate><title>Natural break-up and satellite formation regimes of surfactant-laden liquid threads</title><author>Martínez-Calvo, A. ; Rivero-Rodríguez, J. ; Scheid, B. ; Sevilla, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-722fac691c433be1cacd489c3ed8196ec55168978457ae9e3b2851e5d5ed43cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Aquatic reptiles</topic><topic>Droplets</topic><topic>Elasticity</topic><topic>Experiments</topic><topic>Initial conditions</topic><topic>Interfaces</topic><topic>Newtonian liquids</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Reynolds number</topic><topic>Satellites</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Simulation</topic><topic>Strutt, John William (Lord Rayleigh) (1842-1919)</topic><topic>Surface tension</topic><topic>Surfactants</topic><topic>Viscosity</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Calvo, A.</creatorcontrib><creatorcontrib>Rivero-Rodríguez, J.</creatorcontrib><creatorcontrib>Scheid, B.</creatorcontrib><creatorcontrib>Sevilla, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Calvo, A.</au><au>Rivero-Rodríguez, J.</au><au>Scheid, B.</au><au>Sevilla, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural break-up and satellite formation regimes of surfactant-laden liquid threads</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2020-01-25</date><risdate>2020</risdate><volume>883</volume><artnum>A35</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We report a numerical analysis of the unforced break-up of free cylindrical threads of viscous Newtonian liquid whose interface is coated with insoluble surfactants, focusing on the formation of satellite droplets. The initial conditions are harmonic disturbances of the cylindrical shape with a small amplitude
$\unicode[STIX]{x1D716}$
, and whose wavelength is the most unstable one deduced from linear stability theory. We demonstrate that, in the limit
$\unicode[STIX]{x1D716}\rightarrow 0$
, the problem depends on two dimensionless parameters, namely the Laplace number,
$La=\unicode[STIX]{x1D70C}\unicode[STIX]{x1D70E}_{0}\bar{R}/\unicode[STIX]{x1D707}^{2}$
, and the elasticity parameter,
$\unicode[STIX]{x1D6FD}=E/\unicode[STIX]{x1D70E}_{0}$
, where
$\unicode[STIX]{x1D70C}$
,
$\unicode[STIX]{x1D707}$
and
$\unicode[STIX]{x1D70E}_{0}$
are the liquid density, viscosity and initial surface tension, respectively,
$E$
is the Gibbs elasticity and
$\bar{R}$
is the unperturbed thread radius. A parametric study is presented to quantify the influence of
$La$
and
$\unicode[STIX]{x1D6FD}$
on two key quantities: the satellite droplet volume and the mass of surfactant trapped at the satellite’s surface just prior to pinch-off,
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
, respectively. We identify a weak-elasticity regime,
$\unicode[STIX]{x1D6FD}\lesssim 0.05$
, in which the satellite volume and the associated mass of surfactant obey the scaling law
$V_{sat}=\unicode[STIX]{x1D6F4}_{sat}=0.0042La^{1.64}$
for
$La\lesssim 2$
. For
$La\gtrsim 10$
,
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
reach a plateau of about
$3\,\%$
and
$2.9\,\%$
, respectively,
$V_{sat}$
being in close agreement with previous experiments of low-viscosity threads with clean interfaces. For
$La<7.5$
, we reveal the existence of a discontinuous transition in
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
at a critical elasticity,
$\unicode[STIX]{x1D6FD}_{c}(La)$
, with
$\unicode[STIX]{x1D6FD}_{c}\rightarrow 0.98$
for
$La\lesssim 0.2$
, such that
$V_{sat}$
and
$\unicode[STIX]{x1D6F4}_{sat}$
abruptly increase at
$\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{c}$
for increasing
$\unicode[STIX]{x1D6FD}$
. The jumps experienced by both quantities reach a plateau when
$La\lesssim 0.2$
, while they decrease monotonically as
$La$
increases up to
$La=7.5$
, where both become zero.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.874</doi><orcidid>https://orcid.org/0000-0001-7268-581X</orcidid><orcidid>https://orcid.org/0000-0003-0916-0505</orcidid><orcidid>https://orcid.org/0000-0001-9749-2520</orcidid><orcidid>https://orcid.org/0000-0002-2109-8145</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-01, Vol.883, Article A35 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2904180183 |
source | Cambridge University Press Journals Complete |
subjects | Approximation Aquatic reptiles Droplets Elasticity Experiments Initial conditions Interfaces Newtonian liquids Numerical analysis Parameters Reynolds number Satellites Scaling Scaling laws Simulation Strutt, John William (Lord Rayleigh) (1842-1919) Surface tension Surfactants Viscosity Wavelength |
title | Natural break-up and satellite formation regimes of surfactant-laden liquid threads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20break-up%20and%20satellite%20formation%20regimes%20of%20surfactant-laden%20liquid%20threads&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Mart%C3%ADnez-Calvo,%20A.&rft.date=2020-01-25&rft.volume=883&rft.artnum=A35&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.874&rft_dat=%3Cproquest_cross%3E2904180183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904180183&rft_id=info:pmid/&rfr_iscdi=true |