Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation

To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2024-01, Vol.46 (2), p.301-315
Hauptverfasser: Jonnalagadda, Vimala Kumari, Elumalai, Vinodh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue 2
container_start_page 301
container_title Transactions of the Institute of Measurement and Control
container_volume 46
creator Jonnalagadda, Vimala Kumari
Elumalai, Vinodh Kumar
description To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivity integral, the performance of linear controllers is always a trade-off between reference tracking and robustness. Hence, to deal with the so-called ‘waterbed’ effect, this work exploits the capability of TS fuzzy to handle the nonlinear dynamics and synthesizes a learning control scheme based on current iteration error to capitalize the information rich error signal for enhancing the robustness and trajectory tracking features. The global asymptotic stability of the proposed TS fuzzy augmented ILC scheme is proved using the Lyapunov function and linear matrix inequalities (LMIs). Moreover, the monotonic convergence of ILC is presented based on the singular value condition. For identifying the rolling mass from the video stream, a background subtraction algorithm based on thresholding technique is implemented. Finally, the robustness and tracking features of the proposed scheme are evaluated on a two degrees of freedom (DoF) laboratory scale BPS system through hardware in loop (HIL) testing for three realistic test cases. The tracking performance quantified using the root mean square error (RMSE) and power spectral density plot corroborates that the proposed scheme can offer better setpoint tracking and robustness feature compared to state-of-the-art fuzzy and ILC control techniques implemented on BPS.
doi_str_mv 10.1177/01423312231169163
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904149344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312231169163</sage_id><sourcerecordid>2904149344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-2af4ca562ee0c146cd851b8727b956da0b6685346ca170224c2d6861f6ea17513</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gejQ3k8l03EnxD4ou1PWQZu6U6DSpSabYPoZPbMYKLsRVIOc751wOIafAzgHK8oKB4HkOnOcAsgKZ75ERiLLMWC6rfTIa9GwADslRCK-MMSGkGJHPB2c7Y1F5GqKam85sVTTOUmUb6rFFj1YjjV7pN2MX1LV0bUKvOhrQrx0NmxBxSfswiM9PtO232w1V_WKJNmJDTUSfAtdIu9RhB0o7G73rLun1xwq9GcAUt1adab6rj8lBq7qAJz_vmLzcXD9P77LZ4-399GqWaS5FzLhqhVaF5IhMg5C6mRQwn5S8nFeFbBSbSzkp8iQoKBnnQvNGTiS0EtNHAfmYnO1yV9699xhi_ep6b1NlzSsmQFS5EImCHaW9CyEtUq_SzcpvamD1MH39Z_rkOd95glrgb-r_hi-NYYZj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904149344</pqid></control><display><type>article</type><title>Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation</title><source>SAGE Complete A-Z List</source><creator>Jonnalagadda, Vimala Kumari ; Elumalai, Vinodh Kumar</creator><creatorcontrib>Jonnalagadda, Vimala Kumari ; Elumalai, Vinodh Kumar</creatorcontrib><description>To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivity integral, the performance of linear controllers is always a trade-off between reference tracking and robustness. Hence, to deal with the so-called ‘waterbed’ effect, this work exploits the capability of TS fuzzy to handle the nonlinear dynamics and synthesizes a learning control scheme based on current iteration error to capitalize the information rich error signal for enhancing the robustness and trajectory tracking features. The global asymptotic stability of the proposed TS fuzzy augmented ILC scheme is proved using the Lyapunov function and linear matrix inequalities (LMIs). Moreover, the monotonic convergence of ILC is presented based on the singular value condition. For identifying the rolling mass from the video stream, a background subtraction algorithm based on thresholding technique is implemented. Finally, the robustness and tracking features of the proposed scheme are evaluated on a two degrees of freedom (DoF) laboratory scale BPS system through hardware in loop (HIL) testing for three realistic test cases. The tracking performance quantified using the root mean square error (RMSE) and power spectral density plot corroborates that the proposed scheme can offer better setpoint tracking and robustness feature compared to state-of-the-art fuzzy and ILC control techniques implemented on BPS.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312231169163</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Degrees of freedom ; Dynamical systems ; Error signals ; Fuzzy control ; Hardware-in-the-loop simulation ; Learning ; Liapunov functions ; Linear matrix inequalities ; Mathematical analysis ; Nonlinear dynamics ; Power spectral density ; Robustness (mathematics) ; Root-mean-square errors ; Stabilization ; Tracking control ; Video data</subject><ispartof>Transactions of the Institute of Measurement and Control, 2024-01, Vol.46 (2), p.301-315</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-2af4ca562ee0c146cd851b8727b956da0b6685346ca170224c2d6861f6ea17513</cites><orcidid>0000-0003-2768-3705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312231169163$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312231169163$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Jonnalagadda, Vimala Kumari</creatorcontrib><creatorcontrib>Elumalai, Vinodh Kumar</creatorcontrib><title>Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation</title><title>Transactions of the Institute of Measurement and Control</title><description>To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivity integral, the performance of linear controllers is always a trade-off between reference tracking and robustness. Hence, to deal with the so-called ‘waterbed’ effect, this work exploits the capability of TS fuzzy to handle the nonlinear dynamics and synthesizes a learning control scheme based on current iteration error to capitalize the information rich error signal for enhancing the robustness and trajectory tracking features. The global asymptotic stability of the proposed TS fuzzy augmented ILC scheme is proved using the Lyapunov function and linear matrix inequalities (LMIs). Moreover, the monotonic convergence of ILC is presented based on the singular value condition. For identifying the rolling mass from the video stream, a background subtraction algorithm based on thresholding technique is implemented. Finally, the robustness and tracking features of the proposed scheme are evaluated on a two degrees of freedom (DoF) laboratory scale BPS system through hardware in loop (HIL) testing for three realistic test cases. The tracking performance quantified using the root mean square error (RMSE) and power spectral density plot corroborates that the proposed scheme can offer better setpoint tracking and robustness feature compared to state-of-the-art fuzzy and ILC control techniques implemented on BPS.</description><subject>Algorithms</subject><subject>Degrees of freedom</subject><subject>Dynamical systems</subject><subject>Error signals</subject><subject>Fuzzy control</subject><subject>Hardware-in-the-loop simulation</subject><subject>Learning</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Nonlinear dynamics</subject><subject>Power spectral density</subject><subject>Robustness (mathematics)</subject><subject>Root-mean-square errors</subject><subject>Stabilization</subject><subject>Tracking control</subject><subject>Video data</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4C7gejQ3k8l03EnxD4ou1PWQZu6U6DSpSabYPoZPbMYKLsRVIOc751wOIafAzgHK8oKB4HkOnOcAsgKZ75ERiLLMWC6rfTIa9GwADslRCK-MMSGkGJHPB2c7Y1F5GqKam85sVTTOUmUb6rFFj1YjjV7pN2MX1LV0bUKvOhrQrx0NmxBxSfswiM9PtO232w1V_WKJNmJDTUSfAtdIu9RhB0o7G73rLun1xwq9GcAUt1adab6rj8lBq7qAJz_vmLzcXD9P77LZ4-399GqWaS5FzLhqhVaF5IhMg5C6mRQwn5S8nFeFbBSbSzkp8iQoKBnnQvNGTiS0EtNHAfmYnO1yV9699xhi_ep6b1NlzSsmQFS5EImCHaW9CyEtUq_SzcpvamD1MH39Z_rkOd95glrgb-r_hi-NYYZj</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Jonnalagadda, Vimala Kumari</creator><creator>Elumalai, Vinodh Kumar</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2768-3705</orcidid></search><sort><creationdate>202401</creationdate><title>Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation</title><author>Jonnalagadda, Vimala Kumari ; Elumalai, Vinodh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-2af4ca562ee0c146cd851b8727b956da0b6685346ca170224c2d6861f6ea17513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Degrees of freedom</topic><topic>Dynamical systems</topic><topic>Error signals</topic><topic>Fuzzy control</topic><topic>Hardware-in-the-loop simulation</topic><topic>Learning</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Nonlinear dynamics</topic><topic>Power spectral density</topic><topic>Robustness (mathematics)</topic><topic>Root-mean-square errors</topic><topic>Stabilization</topic><topic>Tracking control</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonnalagadda, Vimala Kumari</creatorcontrib><creatorcontrib>Elumalai, Vinodh Kumar</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonnalagadda, Vimala Kumari</au><au>Elumalai, Vinodh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2024-01</date><risdate>2024</risdate><volume>46</volume><issue>2</issue><spage>301</spage><epage>315</epage><pages>301-315</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivity integral, the performance of linear controllers is always a trade-off between reference tracking and robustness. Hence, to deal with the so-called ‘waterbed’ effect, this work exploits the capability of TS fuzzy to handle the nonlinear dynamics and synthesizes a learning control scheme based on current iteration error to capitalize the information rich error signal for enhancing the robustness and trajectory tracking features. The global asymptotic stability of the proposed TS fuzzy augmented ILC scheme is proved using the Lyapunov function and linear matrix inequalities (LMIs). Moreover, the monotonic convergence of ILC is presented based on the singular value condition. For identifying the rolling mass from the video stream, a background subtraction algorithm based on thresholding technique is implemented. Finally, the robustness and tracking features of the proposed scheme are evaluated on a two degrees of freedom (DoF) laboratory scale BPS system through hardware in loop (HIL) testing for three realistic test cases. The tracking performance quantified using the root mean square error (RMSE) and power spectral density plot corroborates that the proposed scheme can offer better setpoint tracking and robustness feature compared to state-of-the-art fuzzy and ILC control techniques implemented on BPS.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312231169163</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2768-3705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2024-01, Vol.46 (2), p.301-315
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2904149344
source SAGE Complete A-Z List
subjects Algorithms
Degrees of freedom
Dynamical systems
Error signals
Fuzzy control
Hardware-in-the-loop simulation
Learning
Liapunov functions
Linear matrix inequalities
Mathematical analysis
Nonlinear dynamics
Power spectral density
Robustness (mathematics)
Root-mean-square errors
Stabilization
Tracking control
Video data
title Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20stabilization%20and%20reference%20tracking%20of%20visual%20servo%20system%20using%20TS%20fuzzy%20augmented%20iterative%20learning%20control:%20Experimental%20validation&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Jonnalagadda,%20Vimala%20Kumari&rft.date=2024-01&rft.volume=46&rft.issue=2&rft.spage=301&rft.epage=315&rft.pages=301-315&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312231169163&rft_dat=%3Cproquest_cross%3E2904149344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904149344&rft_id=info:pmid/&rft_sage_id=10.1177_01423312231169163&rfr_iscdi=true