Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation
To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivi...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2024-01, Vol.46 (2), p.301-315 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | 2 |
container_start_page | 301 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 46 |
creator | Jonnalagadda, Vimala Kumari Elumalai, Vinodh Kumar |
description | To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivity integral, the performance of linear controllers is always a trade-off between reference tracking and robustness. Hence, to deal with the so-called ‘waterbed’ effect, this work exploits the capability of TS fuzzy to handle the nonlinear dynamics and synthesizes a learning control scheme based on current iteration error to capitalize the information rich error signal for enhancing the robustness and trajectory tracking features. The global asymptotic stability of the proposed TS fuzzy augmented ILC scheme is proved using the Lyapunov function and linear matrix inequalities (LMIs). Moreover, the monotonic convergence of ILC is presented based on the singular value condition. For identifying the rolling mass from the video stream, a background subtraction algorithm based on thresholding technique is implemented. Finally, the robustness and tracking features of the proposed scheme are evaluated on a two degrees of freedom (DoF) laboratory scale BPS system through hardware in loop (HIL) testing for three realistic test cases. The tracking performance quantified using the root mean square error (RMSE) and power spectral density plot corroborates that the proposed scheme can offer better setpoint tracking and robustness feature compared to state-of-the-art fuzzy and ILC control techniques implemented on BPS. |
doi_str_mv | 10.1177/01423312231169163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904149344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312231169163</sage_id><sourcerecordid>2904149344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-2af4ca562ee0c146cd851b8727b956da0b6685346ca170224c2d6861f6ea17513</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gejQ3k8l03EnxD4ou1PWQZu6U6DSpSabYPoZPbMYKLsRVIOc751wOIafAzgHK8oKB4HkOnOcAsgKZ75ERiLLMWC6rfTIa9GwADslRCK-MMSGkGJHPB2c7Y1F5GqKam85sVTTOUmUb6rFFj1YjjV7pN2MX1LV0bUKvOhrQrx0NmxBxSfswiM9PtO232w1V_WKJNmJDTUSfAtdIu9RhB0o7G73rLun1xwq9GcAUt1adab6rj8lBq7qAJz_vmLzcXD9P77LZ4-399GqWaS5FzLhqhVaF5IhMg5C6mRQwn5S8nFeFbBSbSzkp8iQoKBnnQvNGTiS0EtNHAfmYnO1yV9699xhi_ep6b1NlzSsmQFS5EImCHaW9CyEtUq_SzcpvamD1MH39Z_rkOd95glrgb-r_hi-NYYZj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904149344</pqid></control><display><type>article</type><title>Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation</title><source>SAGE Complete A-Z List</source><creator>Jonnalagadda, Vimala Kumari ; Elumalai, Vinodh Kumar</creator><creatorcontrib>Jonnalagadda, Vimala Kumari ; Elumalai, Vinodh Kumar</creatorcontrib><description>To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivity integral, the performance of linear controllers is always a trade-off between reference tracking and robustness. Hence, to deal with the so-called ‘waterbed’ effect, this work exploits the capability of TS fuzzy to handle the nonlinear dynamics and synthesizes a learning control scheme based on current iteration error to capitalize the information rich error signal for enhancing the robustness and trajectory tracking features. The global asymptotic stability of the proposed TS fuzzy augmented ILC scheme is proved using the Lyapunov function and linear matrix inequalities (LMIs). Moreover, the monotonic convergence of ILC is presented based on the singular value condition. For identifying the rolling mass from the video stream, a background subtraction algorithm based on thresholding technique is implemented. Finally, the robustness and tracking features of the proposed scheme are evaluated on a two degrees of freedom (DoF) laboratory scale BPS system through hardware in loop (HIL) testing for three realistic test cases. The tracking performance quantified using the root mean square error (RMSE) and power spectral density plot corroborates that the proposed scheme can offer better setpoint tracking and robustness feature compared to state-of-the-art fuzzy and ILC control techniques implemented on BPS.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312231169163</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Degrees of freedom ; Dynamical systems ; Error signals ; Fuzzy control ; Hardware-in-the-loop simulation ; Learning ; Liapunov functions ; Linear matrix inequalities ; Mathematical analysis ; Nonlinear dynamics ; Power spectral density ; Robustness (mathematics) ; Root-mean-square errors ; Stabilization ; Tracking control ; Video data</subject><ispartof>Transactions of the Institute of Measurement and Control, 2024-01, Vol.46 (2), p.301-315</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-2af4ca562ee0c146cd851b8727b956da0b6685346ca170224c2d6861f6ea17513</cites><orcidid>0000-0003-2768-3705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312231169163$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312231169163$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Jonnalagadda, Vimala Kumari</creatorcontrib><creatorcontrib>Elumalai, Vinodh Kumar</creatorcontrib><title>Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation</title><title>Transactions of the Institute of Measurement and Control</title><description>To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivity integral, the performance of linear controllers is always a trade-off between reference tracking and robustness. Hence, to deal with the so-called ‘waterbed’ effect, this work exploits the capability of TS fuzzy to handle the nonlinear dynamics and synthesizes a learning control scheme based on current iteration error to capitalize the information rich error signal for enhancing the robustness and trajectory tracking features. The global asymptotic stability of the proposed TS fuzzy augmented ILC scheme is proved using the Lyapunov function and linear matrix inequalities (LMIs). Moreover, the monotonic convergence of ILC is presented based on the singular value condition. For identifying the rolling mass from the video stream, a background subtraction algorithm based on thresholding technique is implemented. Finally, the robustness and tracking features of the proposed scheme are evaluated on a two degrees of freedom (DoF) laboratory scale BPS system through hardware in loop (HIL) testing for three realistic test cases. The tracking performance quantified using the root mean square error (RMSE) and power spectral density plot corroborates that the proposed scheme can offer better setpoint tracking and robustness feature compared to state-of-the-art fuzzy and ILC control techniques implemented on BPS.</description><subject>Algorithms</subject><subject>Degrees of freedom</subject><subject>Dynamical systems</subject><subject>Error signals</subject><subject>Fuzzy control</subject><subject>Hardware-in-the-loop simulation</subject><subject>Learning</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Nonlinear dynamics</subject><subject>Power spectral density</subject><subject>Robustness (mathematics)</subject><subject>Root-mean-square errors</subject><subject>Stabilization</subject><subject>Tracking control</subject><subject>Video data</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4C7gejQ3k8l03EnxD4ou1PWQZu6U6DSpSabYPoZPbMYKLsRVIOc751wOIafAzgHK8oKB4HkOnOcAsgKZ75ERiLLMWC6rfTIa9GwADslRCK-MMSGkGJHPB2c7Y1F5GqKam85sVTTOUmUb6rFFj1YjjV7pN2MX1LV0bUKvOhrQrx0NmxBxSfswiM9PtO232w1V_WKJNmJDTUSfAtdIu9RhB0o7G73rLun1xwq9GcAUt1adab6rj8lBq7qAJz_vmLzcXD9P77LZ4-399GqWaS5FzLhqhVaF5IhMg5C6mRQwn5S8nFeFbBSbSzkp8iQoKBnnQvNGTiS0EtNHAfmYnO1yV9699xhi_ep6b1NlzSsmQFS5EImCHaW9CyEtUq_SzcpvamD1MH39Z_rkOd95glrgb-r_hi-NYYZj</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Jonnalagadda, Vimala Kumari</creator><creator>Elumalai, Vinodh Kumar</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2768-3705</orcidid></search><sort><creationdate>202401</creationdate><title>Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation</title><author>Jonnalagadda, Vimala Kumari ; Elumalai, Vinodh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-2af4ca562ee0c146cd851b8727b956da0b6685346ca170224c2d6861f6ea17513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Degrees of freedom</topic><topic>Dynamical systems</topic><topic>Error signals</topic><topic>Fuzzy control</topic><topic>Hardware-in-the-loop simulation</topic><topic>Learning</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Nonlinear dynamics</topic><topic>Power spectral density</topic><topic>Robustness (mathematics)</topic><topic>Root-mean-square errors</topic><topic>Stabilization</topic><topic>Tracking control</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonnalagadda, Vimala Kumari</creatorcontrib><creatorcontrib>Elumalai, Vinodh Kumar</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonnalagadda, Vimala Kumari</au><au>Elumalai, Vinodh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2024-01</date><risdate>2024</risdate><volume>46</volume><issue>2</issue><spage>301</spage><epage>315</epage><pages>301-315</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>To address the nonlinear stabilization problem and improve the tracking control feature of ball on plate system (BPS), this paper puts forward a novel Takagi Sugeno (TS) fuzzy control augmented with the current cycle feedback iterative learning control (CCF-ILC) scheme. According to Bode’s sensitivity integral, the performance of linear controllers is always a trade-off between reference tracking and robustness. Hence, to deal with the so-called ‘waterbed’ effect, this work exploits the capability of TS fuzzy to handle the nonlinear dynamics and synthesizes a learning control scheme based on current iteration error to capitalize the information rich error signal for enhancing the robustness and trajectory tracking features. The global asymptotic stability of the proposed TS fuzzy augmented ILC scheme is proved using the Lyapunov function and linear matrix inequalities (LMIs). Moreover, the monotonic convergence of ILC is presented based on the singular value condition. For identifying the rolling mass from the video stream, a background subtraction algorithm based on thresholding technique is implemented. Finally, the robustness and tracking features of the proposed scheme are evaluated on a two degrees of freedom (DoF) laboratory scale BPS system through hardware in loop (HIL) testing for three realistic test cases. The tracking performance quantified using the root mean square error (RMSE) and power spectral density plot corroborates that the proposed scheme can offer better setpoint tracking and robustness feature compared to state-of-the-art fuzzy and ILC control techniques implemented on BPS.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312231169163</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2768-3705</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2024-01, Vol.46 (2), p.301-315 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_2904149344 |
source | SAGE Complete A-Z List |
subjects | Algorithms Degrees of freedom Dynamical systems Error signals Fuzzy control Hardware-in-the-loop simulation Learning Liapunov functions Linear matrix inequalities Mathematical analysis Nonlinear dynamics Power spectral density Robustness (mathematics) Root-mean-square errors Stabilization Tracking control Video data |
title | Nonlinear stabilization and reference tracking of visual servo system using TS fuzzy augmented iterative learning control: Experimental validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20stabilization%20and%20reference%20tracking%20of%20visual%20servo%20system%20using%20TS%20fuzzy%20augmented%20iterative%20learning%20control:%20Experimental%20validation&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Jonnalagadda,%20Vimala%20Kumari&rft.date=2024-01&rft.volume=46&rft.issue=2&rft.spage=301&rft.epage=315&rft.pages=301-315&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312231169163&rft_dat=%3Cproquest_cross%3E2904149344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904149344&rft_id=info:pmid/&rft_sage_id=10.1177_01423312231169163&rfr_iscdi=true |