Application of the grade selection of X-ray events using machine learning for a CubeSat mission

X-ray observation covering a wide field of view with high sensitivity is essential in searching for an electromagnetic counterpart of gravitational wave events. A lobster-eye optics (LEO) and a large area CMOS sensor are effective instruments to achieve this goal. Furthermore, thanks to the light we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2023-12, Vol.18 (12), p.C12012
Hauptverfasser: Shen, H.C., Sakamoto, T., Serino, M., Ogino, N., Arimoto, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page C12012
container_title Journal of instrumentation
container_volume 18
creator Shen, H.C.
Sakamoto, T.
Serino, M.
Ogino, N.
Arimoto, M.
description X-ray observation covering a wide field of view with high sensitivity is essential in searching for an electromagnetic counterpart of gravitational wave events. A lobster-eye optics (LEO) and a large area CMOS sensor are effective instruments to achieve this goal. Furthermore, thanks to the light weight of LEO, it can be installed on a small platform such as a CubeSat. However, the real-time identification of X-ray events is challenging with restricted resources on space. Therefore, we trained a image recognition network utilizing one of the machine learning models of convolutional neural network (CNN). Then, we use this network to identify X-ray events in the image taken from a CMOS sensor. Moreover, we use a Sony single-board computer, Spresense, that provides ultra-low power consumption and supports machine learning libraries for the process. This paper introduces our machine learning-based X-ray event selection process that is targeted for use on a CubeSat.
doi_str_mv 10.1088/1748-0221/18/12/C12012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2903915482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903915482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-b2807cec868a1c999e655cb5618fe62776c8950104ed51113b8d4635cd8a18f23</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BQl4E-pm0qZNj0vxCxY8qOAtpOl0N0u3rUkr7L-3pX7sQfA0X-8zM7yEXAK7ASblApJIBoxzWMBQ8EUGnAE_IrOfwfFBfkrOvN8yJlIRsRlRy7atrNGdbWralLTbIF07XSD1WKH5br8FTu8pfmDdedp7W6_pTpuNrZFWqF09NsrGUU2zPsdn3dGd9X6Az8lJqSuPF19xTl7vbl-yh2D1dP-YLVeBCZnsgpxLlhg0MpYaTJqmGAthchGDLDHmSRIbmQoGLMJCAECYyyKKQ2GKQS9LHs7J1bS3dc17j75T26Z39XBS8ZSFKYhIjqp4UhnXeO-wVK2zO-32CpgazVSjT2r0ScFQcDWZOYB8Am3T_m7-F7r-A9raevjuUKjaogw_AQlKg5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903915482</pqid></control><display><type>article</type><title>Application of the grade selection of X-ray events using machine learning for a CubeSat mission</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shen, H.C. ; Sakamoto, T. ; Serino, M. ; Ogino, N. ; Arimoto, M.</creator><creatorcontrib>Shen, H.C. ; Sakamoto, T. ; Serino, M. ; Ogino, N. ; Arimoto, M.</creatorcontrib><description>X-ray observation covering a wide field of view with high sensitivity is essential in searching for an electromagnetic counterpart of gravitational wave events. A lobster-eye optics (LEO) and a large area CMOS sensor are effective instruments to achieve this goal. Furthermore, thanks to the light weight of LEO, it can be installed on a small platform such as a CubeSat. However, the real-time identification of X-ray events is challenging with restricted resources on space. Therefore, we trained a image recognition network utilizing one of the machine learning models of convolutional neural network (CNN). Then, we use this network to identify X-ray events in the image taken from a CMOS sensor. Moreover, we use a Sony single-board computer, Spresense, that provides ultra-low power consumption and supports machine learning libraries for the process. This paper introduces our machine learning-based X-ray event selection process that is targeted for use on a CubeSat.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/18/12/C12012</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; CMOS ; Cubesat ; Gravitational waves ; Image processing ; Machine learning ; On-board data handling ; Power consumption ; Weight reduction ; X-ray detectors and telescopes</subject><ispartof>Journal of instrumentation, 2023-12, Vol.18 (12), p.C12012</ispartof><rights>2024 IOP Publishing Ltd and Sissa Medialab</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-b2807cec868a1c999e655cb5618fe62776c8950104ed51113b8d4635cd8a18f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/18/12/C12012/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Shen, H.C.</creatorcontrib><creatorcontrib>Sakamoto, T.</creatorcontrib><creatorcontrib>Serino, M.</creatorcontrib><creatorcontrib>Ogino, N.</creatorcontrib><creatorcontrib>Arimoto, M.</creatorcontrib><title>Application of the grade selection of X-ray events using machine learning for a CubeSat mission</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>X-ray observation covering a wide field of view with high sensitivity is essential in searching for an electromagnetic counterpart of gravitational wave events. A lobster-eye optics (LEO) and a large area CMOS sensor are effective instruments to achieve this goal. Furthermore, thanks to the light weight of LEO, it can be installed on a small platform such as a CubeSat. However, the real-time identification of X-ray events is challenging with restricted resources on space. Therefore, we trained a image recognition network utilizing one of the machine learning models of convolutional neural network (CNN). Then, we use this network to identify X-ray events in the image taken from a CMOS sensor. Moreover, we use a Sony single-board computer, Spresense, that provides ultra-low power consumption and supports machine learning libraries for the process. This paper introduces our machine learning-based X-ray event selection process that is targeted for use on a CubeSat.</description><subject>Artificial neural networks</subject><subject>CMOS</subject><subject>Cubesat</subject><subject>Gravitational waves</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>On-board data handling</subject><subject>Power consumption</subject><subject>Weight reduction</subject><subject>X-ray detectors and telescopes</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BQl4E-pm0qZNj0vxCxY8qOAtpOl0N0u3rUkr7L-3pX7sQfA0X-8zM7yEXAK7ASblApJIBoxzWMBQ8EUGnAE_IrOfwfFBfkrOvN8yJlIRsRlRy7atrNGdbWralLTbIF07XSD1WKH5br8FTu8pfmDdedp7W6_pTpuNrZFWqF09NsrGUU2zPsdn3dGd9X6Az8lJqSuPF19xTl7vbl-yh2D1dP-YLVeBCZnsgpxLlhg0MpYaTJqmGAthchGDLDHmSRIbmQoGLMJCAECYyyKKQ2GKQS9LHs7J1bS3dc17j75T26Z39XBS8ZSFKYhIjqp4UhnXeO-wVK2zO-32CpgazVSjT2r0ScFQcDWZOYB8Am3T_m7-F7r-A9raevjuUKjaogw_AQlKg5Y</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Shen, H.C.</creator><creator>Sakamoto, T.</creator><creator>Serino, M.</creator><creator>Ogino, N.</creator><creator>Arimoto, M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20231201</creationdate><title>Application of the grade selection of X-ray events using machine learning for a CubeSat mission</title><author>Shen, H.C. ; Sakamoto, T. ; Serino, M. ; Ogino, N. ; Arimoto, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-b2807cec868a1c999e655cb5618fe62776c8950104ed51113b8d4635cd8a18f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>CMOS</topic><topic>Cubesat</topic><topic>Gravitational waves</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>On-board data handling</topic><topic>Power consumption</topic><topic>Weight reduction</topic><topic>X-ray detectors and telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, H.C.</creatorcontrib><creatorcontrib>Sakamoto, T.</creatorcontrib><creatorcontrib>Serino, M.</creatorcontrib><creatorcontrib>Ogino, N.</creatorcontrib><creatorcontrib>Arimoto, M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, H.C.</au><au>Sakamoto, T.</au><au>Serino, M.</au><au>Ogino, N.</au><au>Arimoto, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the grade selection of X-ray events using machine learning for a CubeSat mission</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>18</volume><issue>12</issue><spage>C12012</spage><pages>C12012-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>X-ray observation covering a wide field of view with high sensitivity is essential in searching for an electromagnetic counterpart of gravitational wave events. A lobster-eye optics (LEO) and a large area CMOS sensor are effective instruments to achieve this goal. Furthermore, thanks to the light weight of LEO, it can be installed on a small platform such as a CubeSat. However, the real-time identification of X-ray events is challenging with restricted resources on space. Therefore, we trained a image recognition network utilizing one of the machine learning models of convolutional neural network (CNN). Then, we use this network to identify X-ray events in the image taken from a CMOS sensor. Moreover, we use a Sony single-board computer, Spresense, that provides ultra-low power consumption and supports machine learning libraries for the process. This paper introduces our machine learning-based X-ray event selection process that is targeted for use on a CubeSat.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/18/12/C12012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2023-12, Vol.18 (12), p.C12012
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2903915482
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Artificial neural networks
CMOS
Cubesat
Gravitational waves
Image processing
Machine learning
On-board data handling
Power consumption
Weight reduction
X-ray detectors and telescopes
title Application of the grade selection of X-ray events using machine learning for a CubeSat mission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20grade%20selection%20of%20X-ray%20events%20using%20machine%20learning%20for%20a%20CubeSat%20mission&rft.jtitle=Journal%20of%20instrumentation&rft.au=Shen,%20H.C.&rft.date=2023-12-01&rft.volume=18&rft.issue=12&rft.spage=C12012&rft.pages=C12012-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/18/12/C12012&rft_dat=%3Cproquest_cross%3E2903915482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903915482&rft_id=info:pmid/&rfr_iscdi=true