A Comparative Analysis of Large Language Models for Code Documentation Generation
This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and Starchat on various parameters...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shubhang Shekhar Dvivedi Vyshnav Vijay Sai Leela Rahul Pujari Lodh, Shoumik Kumar, Dhruv |
description | This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and Starchat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring Starchat, all LLMs consistently outperform the original documentation. Notably, closed-source models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/source-available LLMs, namely LLama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration, followed by Llama2, Bard, with ChatGPT and Starchat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2903732872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903732872</sourcerecordid><originalsourceid>FETCH-proquest_journals_29037328723</originalsourceid><addsrcrecordid>eNqNjc0KgkAUhYcgKMp3GGgt2J1MW4r9LWoRtJchr6LoXJvrBL19Q_QAbc75FufjTMQclFqH6QZgJgLmNooi2CYQx2oubpnMqR-01WPzQpkZ3b25YUmVvGhbo09TO-3hSiV2LCuy3ihR7unhejSjF8nIExq0X1yKaaU7xuDXC7E6Hu75ORwsPR3yWLTkrP_hAnaRShSkCaj_Vh9Sij7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903732872</pqid></control><display><type>article</type><title>A Comparative Analysis of Large Language Models for Code Documentation Generation</title><source>Free E- Journals</source><creator>Shubhang Shekhar Dvivedi ; Vyshnav Vijay ; Sai Leela Rahul Pujari ; Lodh, Shoumik ; Kumar, Dhruv</creator><creatorcontrib>Shubhang Shekhar Dvivedi ; Vyshnav Vijay ; Sai Leela Rahul Pujari ; Lodh, Shoumik ; Kumar, Dhruv</creatorcontrib><description>This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and Starchat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring Starchat, all LLMs consistently outperform the original documentation. Notably, closed-source models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/source-available LLMs, namely LLama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration, followed by Llama2, Bard, with ChatGPT and Starchat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Comparative analysis ; Documentation ; Large language models ; Mathematical models ; Parameters</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shubhang Shekhar Dvivedi</creatorcontrib><creatorcontrib>Vyshnav Vijay</creatorcontrib><creatorcontrib>Sai Leela Rahul Pujari</creatorcontrib><creatorcontrib>Lodh, Shoumik</creatorcontrib><creatorcontrib>Kumar, Dhruv</creatorcontrib><title>A Comparative Analysis of Large Language Models for Code Documentation Generation</title><title>arXiv.org</title><description>This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and Starchat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring Starchat, all LLMs consistently outperform the original documentation. Notably, closed-source models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/source-available LLMs, namely LLama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration, followed by Llama2, Bard, with ChatGPT and Starchat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation.</description><subject>Artificial intelligence</subject><subject>Comparative analysis</subject><subject>Documentation</subject><subject>Large language models</subject><subject>Mathematical models</subject><subject>Parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjc0KgkAUhYcgKMp3GGgt2J1MW4r9LWoRtJchr6LoXJvrBL19Q_QAbc75FufjTMQclFqH6QZgJgLmNooi2CYQx2oubpnMqR-01WPzQpkZ3b25YUmVvGhbo09TO-3hSiV2LCuy3ihR7unhejSjF8nIExq0X1yKaaU7xuDXC7E6Hu75ORwsPR3yWLTkrP_hAnaRShSkCaj_Vh9Sij7c</recordid><startdate>20240427</startdate><enddate>20240427</enddate><creator>Shubhang Shekhar Dvivedi</creator><creator>Vyshnav Vijay</creator><creator>Sai Leela Rahul Pujari</creator><creator>Lodh, Shoumik</creator><creator>Kumar, Dhruv</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240427</creationdate><title>A Comparative Analysis of Large Language Models for Code Documentation Generation</title><author>Shubhang Shekhar Dvivedi ; Vyshnav Vijay ; Sai Leela Rahul Pujari ; Lodh, Shoumik ; Kumar, Dhruv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29037328723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Comparative analysis</topic><topic>Documentation</topic><topic>Large language models</topic><topic>Mathematical models</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Shubhang Shekhar Dvivedi</creatorcontrib><creatorcontrib>Vyshnav Vijay</creatorcontrib><creatorcontrib>Sai Leela Rahul Pujari</creatorcontrib><creatorcontrib>Lodh, Shoumik</creatorcontrib><creatorcontrib>Kumar, Dhruv</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shubhang Shekhar Dvivedi</au><au>Vyshnav Vijay</au><au>Sai Leela Rahul Pujari</au><au>Lodh, Shoumik</au><au>Kumar, Dhruv</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Comparative Analysis of Large Language Models for Code Documentation Generation</atitle><jtitle>arXiv.org</jtitle><date>2024-04-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and Starchat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring Starchat, all LLMs consistently outperform the original documentation. Notably, closed-source models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/source-available LLMs, namely LLama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration, followed by Llama2, Bard, with ChatGPT and Starchat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2903732872 |
source | Free E- Journals |
subjects | Artificial intelligence Comparative analysis Documentation Large language models Mathematical models Parameters |
title | A Comparative Analysis of Large Language Models for Code Documentation Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Comparative%20Analysis%20of%20Large%20Language%20Models%20for%20Code%20Documentation%20Generation&rft.jtitle=arXiv.org&rft.au=Shubhang%20Shekhar%20Dvivedi&rft.date=2024-04-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2903732872%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903732872&rft_id=info:pmid/&rfr_iscdi=true |