A Framework of Full-Process Generation Design for Park Green Spaces Based on Remote Sensing Segmentation-GAN-Diffusion

The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Chen, Ran, Yi, Xingjian, Zhao, Jing, He, Yueheng, Chen, Bainian, Yao, Xueqi, Liu, Fangjun, Li, Haoran, Lian, Zeke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Ran
Yi, Xingjian
Zhao, Jing
He, Yueheng
Chen, Bainian
Yao, Xueqi
Liu, Fangjun
Li, Haoran
Lian, Zeke
description The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other traditional generative algorithms generate results with low resolution and insufficient details. To address these two problems, we integrate GAN, Stable diffusion multimodal large-scale image pre-training model to construct a full-process park generative design method: 1) First, construct a high-precision remote sensing object extraction system for automated extraction of urban environmental information; 2) Secondly, use GAN to construct a park design generation system based on the external environment, which can quickly infer and generate design schemes from urban environmental information; 3) Finally, introduce Stable Diffusion to optimize the design plan, fill in details, and expand the resolution of the plan by 64 times. This method can achieve a fully unmanned design automation workflow. The research results show that: 1) The relationship between the inside and outside of the site will affect the algorithm generation results. 2) Compared with traditional GAN algorithms, Stable diffusion significantly improve the information richness of the generated results.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2903732664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903732664</sourcerecordid><originalsourceid>FETCH-proquest_journals_29037326643</originalsourceid><addsrcrecordid>eNqNzM0KwjAQBOAgCBbtOyx4DtSktnr0r_UkYr1L0E2ptknNtvr6BvEBPA3DfMyABULKGV_EQoxYSHSPokgkqZjPZcBeK8icavBt3QOshqyva3509opEkKNBp7rKGtgiVaUBbR0clae5QzRQtMpDWCvCG3h1wsZ2CAUaqkzps2zQdN8Hnq8OfFtp3ZNvEzbUqiYMfzlm02x33ux56-yzR-oud9s746eLWEYylSJJYvmf-gDzHUvB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903732664</pqid></control><display><type>article</type><title>A Framework of Full-Process Generation Design for Park Green Spaces Based on Remote Sensing Segmentation-GAN-Diffusion</title><source>Free E- Journals</source><creator>Chen, Ran ; Yi, Xingjian ; Zhao, Jing ; He, Yueheng ; Chen, Bainian ; Yao, Xueqi ; Liu, Fangjun ; Li, Haoran ; Lian, Zeke</creator><creatorcontrib>Chen, Ran ; Yi, Xingjian ; Zhao, Jing ; He, Yueheng ; Chen, Bainian ; Yao, Xueqi ; Liu, Fangjun ; Li, Haoran ; Lian, Zeke</creatorcontrib><description>The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other traditional generative algorithms generate results with low resolution and insufficient details. To address these two problems, we integrate GAN, Stable diffusion multimodal large-scale image pre-training model to construct a full-process park generative design method: 1) First, construct a high-precision remote sensing object extraction system for automated extraction of urban environmental information; 2) Secondly, use GAN to construct a park design generation system based on the external environment, which can quickly infer and generate design schemes from urban environmental information; 3) Finally, introduce Stable Diffusion to optimize the design plan, fill in details, and expand the resolution of the plan by 64 times. This method can achieve a fully unmanned design automation workflow. The research results show that: 1) The relationship between the inside and outside of the site will affect the algorithm generation results. 2) Compared with traditional GAN algorithms, Stable diffusion significantly improve the information richness of the generated results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Design optimization ; Remote sensing ; Workflow</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Yi, Xingjian</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>He, Yueheng</creatorcontrib><creatorcontrib>Chen, Bainian</creatorcontrib><creatorcontrib>Yao, Xueqi</creatorcontrib><creatorcontrib>Liu, Fangjun</creatorcontrib><creatorcontrib>Li, Haoran</creatorcontrib><creatorcontrib>Lian, Zeke</creatorcontrib><title>A Framework of Full-Process Generation Design for Park Green Spaces Based on Remote Sensing Segmentation-GAN-Diffusion</title><title>arXiv.org</title><description>The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other traditional generative algorithms generate results with low resolution and insufficient details. To address these two problems, we integrate GAN, Stable diffusion multimodal large-scale image pre-training model to construct a full-process park generative design method: 1) First, construct a high-precision remote sensing object extraction system for automated extraction of urban environmental information; 2) Secondly, use GAN to construct a park design generation system based on the external environment, which can quickly infer and generate design schemes from urban environmental information; 3) Finally, introduce Stable Diffusion to optimize the design plan, fill in details, and expand the resolution of the plan by 64 times. This method can achieve a fully unmanned design automation workflow. The research results show that: 1) The relationship between the inside and outside of the site will affect the algorithm generation results. 2) Compared with traditional GAN algorithms, Stable diffusion significantly improve the information richness of the generated results.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Design optimization</subject><subject>Remote sensing</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzM0KwjAQBOAgCBbtOyx4DtSktnr0r_UkYr1L0E2ptknNtvr6BvEBPA3DfMyABULKGV_EQoxYSHSPokgkqZjPZcBeK8icavBt3QOshqyva3509opEkKNBp7rKGtgiVaUBbR0clae5QzRQtMpDWCvCG3h1wsZ2CAUaqkzps2zQdN8Hnq8OfFtp3ZNvEzbUqiYMfzlm02x33ux56-yzR-oud9s746eLWEYylSJJYvmf-gDzHUvB</recordid><startdate>20231217</startdate><enddate>20231217</enddate><creator>Chen, Ran</creator><creator>Yi, Xingjian</creator><creator>Zhao, Jing</creator><creator>He, Yueheng</creator><creator>Chen, Bainian</creator><creator>Yao, Xueqi</creator><creator>Liu, Fangjun</creator><creator>Li, Haoran</creator><creator>Lian, Zeke</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231217</creationdate><title>A Framework of Full-Process Generation Design for Park Green Spaces Based on Remote Sensing Segmentation-GAN-Diffusion</title><author>Chen, Ran ; Yi, Xingjian ; Zhao, Jing ; He, Yueheng ; Chen, Bainian ; Yao, Xueqi ; Liu, Fangjun ; Li, Haoran ; Lian, Zeke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29037326643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Design optimization</topic><topic>Remote sensing</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Yi, Xingjian</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>He, Yueheng</creatorcontrib><creatorcontrib>Chen, Bainian</creatorcontrib><creatorcontrib>Yao, Xueqi</creatorcontrib><creatorcontrib>Liu, Fangjun</creatorcontrib><creatorcontrib>Li, Haoran</creatorcontrib><creatorcontrib>Lian, Zeke</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ran</au><au>Yi, Xingjian</au><au>Zhao, Jing</au><au>He, Yueheng</au><au>Chen, Bainian</au><au>Yao, Xueqi</au><au>Liu, Fangjun</au><au>Li, Haoran</au><au>Lian, Zeke</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Framework of Full-Process Generation Design for Park Green Spaces Based on Remote Sensing Segmentation-GAN-Diffusion</atitle><jtitle>arXiv.org</jtitle><date>2023-12-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other traditional generative algorithms generate results with low resolution and insufficient details. To address these two problems, we integrate GAN, Stable diffusion multimodal large-scale image pre-training model to construct a full-process park generative design method: 1) First, construct a high-precision remote sensing object extraction system for automated extraction of urban environmental information; 2) Secondly, use GAN to construct a park design generation system based on the external environment, which can quickly infer and generate design schemes from urban environmental information; 3) Finally, introduce Stable Diffusion to optimize the design plan, fill in details, and expand the resolution of the plan by 64 times. This method can achieve a fully unmanned design automation workflow. The research results show that: 1) The relationship between the inside and outside of the site will affect the algorithm generation results. 2) Compared with traditional GAN algorithms, Stable diffusion significantly improve the information richness of the generated results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2903732664
source Free E- Journals
subjects Algorithms
Artificial intelligence
Automation
Design optimization
Remote sensing
Workflow
title A Framework of Full-Process Generation Design for Park Green Spaces Based on Remote Sensing Segmentation-GAN-Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Framework%20of%20Full-Process%20Generation%20Design%20for%20Park%20Green%20Spaces%20Based%20on%20Remote%20Sensing%20Segmentation-GAN-Diffusion&rft.jtitle=arXiv.org&rft.au=Chen,%20Ran&rft.date=2023-12-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2903732664%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903732664&rft_id=info:pmid/&rfr_iscdi=true