The exact solutions to a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel equation

In this paper, we study a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel (LPD) equation which can be derived from the two-component LPD system with a special reduction. We construct the multi-fold binary Darboux transformation for the nonlocal equation. The advantage of the binary Darb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024, Vol.112 (1), p.591-599
Hauptverfasser: Song, Caiqin, Fang, Ri-Rong, Zhang, Hui-Li, Zhao, Hai-qiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 1
container_start_page 591
container_title Nonlinear dynamics
container_volume 112
creator Song, Caiqin
Fang, Ri-Rong
Zhang, Hui-Li
Zhao, Hai-qiong
description In this paper, we study a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel (LPD) equation which can be derived from the two-component LPD system with a special reduction. We construct the multi-fold binary Darboux transformation for the nonlocal equation. The advantage of the binary Darboux transformation is that it provide a short-cut to construct explicit formulas for the solutions of nonlocal equation with zero and non-zero background conditions, such as the interaction bright soliton wave which can degenerate into the one bright wave having a sudden phase shift, the bound state bright wave which looks like a breather wave, the multi-humps bright wave, the interaction breather wave and the resonance breather wave. We find that these solutions exhibit various dynamic evolutions, and most of the collisions between the waves in these solutions are inelastic.
doi_str_mv 10.1007/s11071-023-09057-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2903728758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903728758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2706-5ed2571bec0f8a36b47a5edbd31f7f0ddcc87b26be45fb8683fcb0c438eebd23</originalsourceid><addsrcrecordid>eNp9kL1OwzAQxy0EEqXwAkyWmANnO4mTEfEtVYKhQzfLdi40JbVbOwXKxDvwhjwJaYvExnS6-3-c9CPklME5A5AXkTGQLAEuEighk4ncIwOWSZHwvJzskwGUPN1Ik0NyFOMMAASHYkDMeIoU37XtaPTtqmu8i7TzVFOHb7RbL5DGhbZIA75iiEidd623uqUj_RKnc-20-_78evK9Fj6a7XKtXYMtxeVKb_qOyUGt24gnv3NIxrc346v7ZPR493B1OUosl5AnGVY8k8yghbrQIjep1P3NVILVsoaqsraQhucG06w2RV6I2hqwqSgQTcXFkJztahfBL1cYOzXzq-D6j4qXICQvZFb0Lr5z2eBjDFirRWjmOqwVA7VBqXYoVY9SbVEq2YfELhR7s3vG8Ff9T-oHDQ57Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903728758</pqid></control><display><type>article</type><title>The exact solutions to a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Song, Caiqin ; Fang, Ri-Rong ; Zhang, Hui-Li ; Zhao, Hai-qiong</creator><creatorcontrib>Song, Caiqin ; Fang, Ri-Rong ; Zhang, Hui-Li ; Zhao, Hai-qiong</creatorcontrib><description>In this paper, we study a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel (LPD) equation which can be derived from the two-component LPD system with a special reduction. We construct the multi-fold binary Darboux transformation for the nonlocal equation. The advantage of the binary Darboux transformation is that it provide a short-cut to construct explicit formulas for the solutions of nonlocal equation with zero and non-zero background conditions, such as the interaction bright soliton wave which can degenerate into the one bright wave having a sudden phase shift, the bound state bright wave which looks like a breather wave, the multi-humps bright wave, the interaction breather wave and the resonance breather wave. We find that these solutions exhibit various dynamic evolutions, and most of the collisions between the waves in these solutions are inelastic.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-09057-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Breathers ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Exact solutions ; Mechanical Engineering ; Nonlinear equations ; Original Paper ; Propagation ; Solitary waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2024, Vol.112 (1), p.591-599</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2706-5ed2571bec0f8a36b47a5edbd31f7f0ddcc87b26be45fb8683fcb0c438eebd23</citedby><cites>FETCH-LOGICAL-c2706-5ed2571bec0f8a36b47a5edbd31f7f0ddcc87b26be45fb8683fcb0c438eebd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-09057-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-09057-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Song, Caiqin</creatorcontrib><creatorcontrib>Fang, Ri-Rong</creatorcontrib><creatorcontrib>Zhang, Hui-Li</creatorcontrib><creatorcontrib>Zhao, Hai-qiong</creatorcontrib><title>The exact solutions to a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we study a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel (LPD) equation which can be derived from the two-component LPD system with a special reduction. We construct the multi-fold binary Darboux transformation for the nonlocal equation. The advantage of the binary Darboux transformation is that it provide a short-cut to construct explicit formulas for the solutions of nonlocal equation with zero and non-zero background conditions, such as the interaction bright soliton wave which can degenerate into the one bright wave having a sudden phase shift, the bound state bright wave which looks like a breather wave, the multi-humps bright wave, the interaction breather wave and the resonance breather wave. We find that these solutions exhibit various dynamic evolutions, and most of the collisions between the waves in these solutions are inelastic.</description><subject>Automotive Engineering</subject><subject>Breathers</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Mechanical Engineering</subject><subject>Nonlinear equations</subject><subject>Original Paper</subject><subject>Propagation</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kL1OwzAQxy0EEqXwAkyWmANnO4mTEfEtVYKhQzfLdi40JbVbOwXKxDvwhjwJaYvExnS6-3-c9CPklME5A5AXkTGQLAEuEighk4ncIwOWSZHwvJzskwGUPN1Ik0NyFOMMAASHYkDMeIoU37XtaPTtqmu8i7TzVFOHb7RbL5DGhbZIA75iiEidd623uqUj_RKnc-20-_78evK9Fj6a7XKtXYMtxeVKb_qOyUGt24gnv3NIxrc346v7ZPR493B1OUosl5AnGVY8k8yghbrQIjep1P3NVILVsoaqsraQhucG06w2RV6I2hqwqSgQTcXFkJztahfBL1cYOzXzq-D6j4qXICQvZFb0Lr5z2eBjDFirRWjmOqwVA7VBqXYoVY9SbVEq2YfELhR7s3vG8Ff9T-oHDQ57Sw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Song, Caiqin</creator><creator>Fang, Ri-Rong</creator><creator>Zhang, Hui-Li</creator><creator>Zhao, Hai-qiong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>2024</creationdate><title>The exact solutions to a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel equation</title><author>Song, Caiqin ; Fang, Ri-Rong ; Zhang, Hui-Li ; Zhao, Hai-qiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2706-5ed2571bec0f8a36b47a5edbd31f7f0ddcc87b26be45fb8683fcb0c438eebd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automotive Engineering</topic><topic>Breathers</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Mechanical Engineering</topic><topic>Nonlinear equations</topic><topic>Original Paper</topic><topic>Propagation</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Caiqin</creatorcontrib><creatorcontrib>Fang, Ri-Rong</creatorcontrib><creatorcontrib>Zhang, Hui-Li</creatorcontrib><creatorcontrib>Zhao, Hai-qiong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Caiqin</au><au>Fang, Ri-Rong</au><au>Zhang, Hui-Li</au><au>Zhao, Hai-qiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The exact solutions to a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024</date><risdate>2024</risdate><volume>112</volume><issue>1</issue><spage>591</spage><epage>599</epage><pages>591-599</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we study a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel (LPD) equation which can be derived from the two-component LPD system with a special reduction. We construct the multi-fold binary Darboux transformation for the nonlocal equation. The advantage of the binary Darboux transformation is that it provide a short-cut to construct explicit formulas for the solutions of nonlocal equation with zero and non-zero background conditions, such as the interaction bright soliton wave which can degenerate into the one bright wave having a sudden phase shift, the bound state bright wave which looks like a breather wave, the multi-humps bright wave, the interaction breather wave and the resonance breather wave. We find that these solutions exhibit various dynamic evolutions, and most of the collisions between the waves in these solutions are inelastic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-09057-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024, Vol.112 (1), p.591-599
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2903728758
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Breathers
Classical Mechanics
Control
Dynamical Systems
Engineering
Exact solutions
Mechanical Engineering
Nonlinear equations
Original Paper
Propagation
Solitary waves
Vibration
title The exact solutions to a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20exact%20solutions%20to%20a%20new%20type%20space%20reverse%20nonlocal%20Lakshmanan%E2%80%93Porserzian%E2%80%93Daniel%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Song,%20Caiqin&rft.date=2024&rft.volume=112&rft.issue=1&rft.spage=591&rft.epage=599&rft.pages=591-599&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-09057-7&rft_dat=%3Cproquest_cross%3E2903728758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903728758&rft_id=info:pmid/&rfr_iscdi=true