Synthesis and study of microstructural, optical and electrical properties of Na-doped Cu2ZnSnS4 thin films via thermal evaporation

Non-doped and sodium-doped Cu 2 ZnSnS 4 (CZTS) thin films deposited on heated glass substrates at 100 °C have been successfully fabricated by the thermal evaporation technique, after what all layers were annealed under sulfur atmosphere at 400 °C. The structural properties of all layers were analyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2024, Vol.35 (1), p.11, Article 11
Hauptverfasser: Marzougui, M., Antoni, F., Ben Rabeh, M., Kanzari, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 11
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Marzougui, M.
Antoni, F.
Ben Rabeh, M.
Kanzari, M.
description Non-doped and sodium-doped Cu 2 ZnSnS 4 (CZTS) thin films deposited on heated glass substrates at 100 °C have been successfully fabricated by the thermal evaporation technique, after what all layers were annealed under sulfur atmosphere at 400 °C. The structural properties of all layers were analyzed using X-ray diffraction and Raman spectroscopy methods. These analysis reveals a polycrystalline with kesterite structure and preferential orientation along the (112) plane for all samples. The surface morphology of all samples was investigated using atomic force microscopy (AFM). The obtained topographies show an improvement of the crystalline quality of post-sulfurized Na-doped CZTS films. Further, the optical measurement recorded by UV–Vis spectroscopy reveals that the direct band gap energy of post-sulfurized Na-doped CZTS films were in the range of 1.56 eV and 1.61 eV. Electrically, all films show p-type electrical conductivity, measured by the hot probe method. In addition, Hall Effect measurements show that Na-doped CZTS thin films exhibit lower resistivity and mobility, as well as higher carrier concentration, than Non-doped films. We can conclude that doping CZTS with Na makes it a better photovoltaic material, and that it is suitable as an absorber layer.
doi_str_mv 10.1007/s10854-023-11738-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2903727881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903727881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a3af6ad225869e490f09c926f7bf5f550dade8256e7a8324f22d04892dd89e393</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXArdE8JjPJUoovKLqogrgJcZLYlOnMmGQK3frLTTuCO1eXA-c7994DwDnBVwTj6joSLHiBMGWIkIoJxA7AhPCKoULQt0MwwZJXqOCUHoOTGFcY47JgYgK-F9s2LW30EerWwJgGs4Wdg2tfhy6mMNRpCLq5hF2ffK2bvcs2tk5hL_vQ9TYkb-OOetLIZG3gbKDv7aJdFDAtfQudb9YRbrzO0oZ15uxG913QyXftKThyuon27HdOwevd7cvsAc2f7x9nN3NUMyIT0ky7UhtKuSilLSR2WNaSlq76cNxxjo02VlBe2koLRgtHqcGFkNQYIS2TbAouxtx889dgY1KrbghtXqmoxKyilRAku-jo2v0fg3WqD36tw1YRrHZdq7FrlbtW-64VyxAboZjN7acNf9H_UD_SvYPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903727881</pqid></control><display><type>article</type><title>Synthesis and study of microstructural, optical and electrical properties of Na-doped Cu2ZnSnS4 thin films via thermal evaporation</title><source>Springer Nature - Complete Springer Journals</source><creator>Marzougui, M. ; Antoni, F. ; Ben Rabeh, M. ; Kanzari, M.</creator><creatorcontrib>Marzougui, M. ; Antoni, F. ; Ben Rabeh, M. ; Kanzari, M.</creatorcontrib><description>Non-doped and sodium-doped Cu 2 ZnSnS 4 (CZTS) thin films deposited on heated glass substrates at 100 °C have been successfully fabricated by the thermal evaporation technique, after what all layers were annealed under sulfur atmosphere at 400 °C. The structural properties of all layers were analyzed using X-ray diffraction and Raman spectroscopy methods. These analysis reveals a polycrystalline with kesterite structure and preferential orientation along the (112) plane for all samples. The surface morphology of all samples was investigated using atomic force microscopy (AFM). The obtained topographies show an improvement of the crystalline quality of post-sulfurized Na-doped CZTS films. Further, the optical measurement recorded by UV–Vis spectroscopy reveals that the direct band gap energy of post-sulfurized Na-doped CZTS films were in the range of 1.56 eV and 1.61 eV. Electrically, all films show p-type electrical conductivity, measured by the hot probe method. In addition, Hall Effect measurements show that Na-doped CZTS thin films exhibit lower resistivity and mobility, as well as higher carrier concentration, than Non-doped films. We can conclude that doping CZTS with Na makes it a better photovoltaic material, and that it is suitable as an absorber layer.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11738-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Doped films ; Electrical properties ; Electrical resistivity ; Energy gap ; Evaporation ; Glass substrates ; Hall effect ; Materials Science ; Optical and Electronic Materials ; Optical measurement ; Optical properties ; Raman spectroscopy ; Sodium ; Spectrum analysis ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2024, Vol.35 (1), p.11, Article 11</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a3af6ad225869e490f09c926f7bf5f550dade8256e7a8324f22d04892dd89e393</citedby><cites>FETCH-LOGICAL-c319t-a3af6ad225869e490f09c926f7bf5f550dade8256e7a8324f22d04892dd89e393</cites><orcidid>0000-0003-0233-1121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11738-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11738-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marzougui, M.</creatorcontrib><creatorcontrib>Antoni, F.</creatorcontrib><creatorcontrib>Ben Rabeh, M.</creatorcontrib><creatorcontrib>Kanzari, M.</creatorcontrib><title>Synthesis and study of microstructural, optical and electrical properties of Na-doped Cu2ZnSnS4 thin films via thermal evaporation</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Non-doped and sodium-doped Cu 2 ZnSnS 4 (CZTS) thin films deposited on heated glass substrates at 100 °C have been successfully fabricated by the thermal evaporation technique, after what all layers were annealed under sulfur atmosphere at 400 °C. The structural properties of all layers were analyzed using X-ray diffraction and Raman spectroscopy methods. These analysis reveals a polycrystalline with kesterite structure and preferential orientation along the (112) plane for all samples. The surface morphology of all samples was investigated using atomic force microscopy (AFM). The obtained topographies show an improvement of the crystalline quality of post-sulfurized Na-doped CZTS films. Further, the optical measurement recorded by UV–Vis spectroscopy reveals that the direct band gap energy of post-sulfurized Na-doped CZTS films were in the range of 1.56 eV and 1.61 eV. Electrically, all films show p-type electrical conductivity, measured by the hot probe method. In addition, Hall Effect measurements show that Na-doped CZTS thin films exhibit lower resistivity and mobility, as well as higher carrier concentration, than Non-doped films. We can conclude that doping CZTS with Na makes it a better photovoltaic material, and that it is suitable as an absorber layer.</description><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Doped films</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Energy gap</subject><subject>Evaporation</subject><subject>Glass substrates</subject><subject>Hall effect</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical measurement</subject><subject>Optical properties</subject><subject>Raman spectroscopy</subject><subject>Sodium</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXArdE8JjPJUoovKLqogrgJcZLYlOnMmGQK3frLTTuCO1eXA-c7994DwDnBVwTj6joSLHiBMGWIkIoJxA7AhPCKoULQt0MwwZJXqOCUHoOTGFcY47JgYgK-F9s2LW30EerWwJgGs4Wdg2tfhy6mMNRpCLq5hF2ffK2bvcs2tk5hL_vQ9TYkb-OOetLIZG3gbKDv7aJdFDAtfQudb9YRbrzO0oZ15uxG913QyXftKThyuon27HdOwevd7cvsAc2f7x9nN3NUMyIT0ky7UhtKuSilLSR2WNaSlq76cNxxjo02VlBe2koLRgtHqcGFkNQYIS2TbAouxtx889dgY1KrbghtXqmoxKyilRAku-jo2v0fg3WqD36tw1YRrHZdq7FrlbtW-64VyxAboZjN7acNf9H_UD_SvYPM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Marzougui, M.</creator><creator>Antoni, F.</creator><creator>Ben Rabeh, M.</creator><creator>Kanzari, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0233-1121</orcidid></search><sort><creationdate>2024</creationdate><title>Synthesis and study of microstructural, optical and electrical properties of Na-doped Cu2ZnSnS4 thin films via thermal evaporation</title><author>Marzougui, M. ; Antoni, F. ; Ben Rabeh, M. ; Kanzari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a3af6ad225869e490f09c926f7bf5f550dade8256e7a8324f22d04892dd89e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Doped films</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Energy gap</topic><topic>Evaporation</topic><topic>Glass substrates</topic><topic>Hall effect</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical measurement</topic><topic>Optical properties</topic><topic>Raman spectroscopy</topic><topic>Sodium</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzougui, M.</creatorcontrib><creatorcontrib>Antoni, F.</creatorcontrib><creatorcontrib>Ben Rabeh, M.</creatorcontrib><creatorcontrib>Kanzari, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzougui, M.</au><au>Antoni, F.</au><au>Ben Rabeh, M.</au><au>Kanzari, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and study of microstructural, optical and electrical properties of Na-doped Cu2ZnSnS4 thin films via thermal evaporation</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024</date><risdate>2024</risdate><volume>35</volume><issue>1</issue><spage>11</spage><pages>11-</pages><artnum>11</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Non-doped and sodium-doped Cu 2 ZnSnS 4 (CZTS) thin films deposited on heated glass substrates at 100 °C have been successfully fabricated by the thermal evaporation technique, after what all layers were annealed under sulfur atmosphere at 400 °C. The structural properties of all layers were analyzed using X-ray diffraction and Raman spectroscopy methods. These analysis reveals a polycrystalline with kesterite structure and preferential orientation along the (112) plane for all samples. The surface morphology of all samples was investigated using atomic force microscopy (AFM). The obtained topographies show an improvement of the crystalline quality of post-sulfurized Na-doped CZTS films. Further, the optical measurement recorded by UV–Vis spectroscopy reveals that the direct band gap energy of post-sulfurized Na-doped CZTS films were in the range of 1.56 eV and 1.61 eV. Electrically, all films show p-type electrical conductivity, measured by the hot probe method. In addition, Hall Effect measurements show that Na-doped CZTS thin films exhibit lower resistivity and mobility, as well as higher carrier concentration, than Non-doped films. We can conclude that doping CZTS with Na makes it a better photovoltaic material, and that it is suitable as an absorber layer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11738-3</doi><orcidid>https://orcid.org/0000-0003-0233-1121</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024, Vol.35 (1), p.11, Article 11
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2903727881
source Springer Nature - Complete Springer Journals
subjects Carrier density
Characterization and Evaluation of Materials
Chemistry and Materials Science
Doped films
Electrical properties
Electrical resistivity
Energy gap
Evaporation
Glass substrates
Hall effect
Materials Science
Optical and Electronic Materials
Optical measurement
Optical properties
Raman spectroscopy
Sodium
Spectrum analysis
Thin films
title Synthesis and study of microstructural, optical and electrical properties of Na-doped Cu2ZnSnS4 thin films via thermal evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20study%20of%20microstructural,%20optical%20and%20electrical%20properties%20of%20Na-doped%20Cu2ZnSnS4%20thin%20films%20via%20thermal%20evaporation&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Marzougui,%20M.&rft.date=2024&rft.volume=35&rft.issue=1&rft.spage=11&rft.pages=11-&rft.artnum=11&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11738-3&rft_dat=%3Cproquest_cross%3E2903727881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903727881&rft_id=info:pmid/&rfr_iscdi=true