Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres
The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2024-01, Vol.70 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | AIChE journal |
container_volume | 70 |
creator | Chen, Shibin Yang, Cuiting Zhou, Xiaoying Miao, Guang Yu, Hao Xiao, Jing |
description | The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well as p‐xylene uptake of 91mg/g, outperforming a series of commercial adsorbents including the industrial benchmark KBaX. The micropore diffusion model was used to give the best fit to the adsorption kinetics of UMC‐xyl with a rate achieved higher than KBaX. The xylene isomer separation was facilitated by the narrow ultramicropore size distributed at 5.8–6.8 Å in UMC‐xyl via a synergistic kinetic and size‐sieving separation mechanism. Breakthrough experiments confirmed the effectiveness of UMC‐xyl in the dynamic selective separation of p‐xylene from xylene isomers, together with superior multiple‐cycle eluent regenerability under the synergistic effects of the “like‐dissolve‐like” principle and π–π interaction. The work opens a new direction of using porous carbon adsorbents for continuous liquid‐phase separation of challenging hydrocarbon isomers. |
doi_str_mv | 10.1002/aic.18246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2903580174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903580174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-7cfe32455ddadf748725c0c4b07bfabd5e1f42b67917da0df784b1032e2051393</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtLZj18mIKi6VKrGAxGY59onqKo1TOwG68Qg8I0-CIaxM1rG-c9GP0CUlM0oIm2tnZrRgfHGEJlRwmYmSiGM0IYTQLH3QU3QW4zZVTBZsgl7Wbj84-_Xx2W10BByhAdO7V8DaRh-63vkW-xq_HxpoAbvodxAidi0emj7onTPBdz74IWKjQ5Vw7DYQIJ6jk1o3ES7-3il6vrt9Wj5k68f71fJmnRkm5CKTpoaccSGs1baWvJBMGGJ4RWRV68oKoDVn1UKWVFpNEil4RUnOgBFB8zKfoqtxbhf8foDYq60fQptWKlaSXBSESp7U9ajSuTEGqFUX3E6Hg6JE_QSnUnDqN7hk56N9cw0c_ofqZrUcO74B44lxXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903580174</pqid></control><display><type>article</type><title>Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Shibin ; Yang, Cuiting ; Zhou, Xiaoying ; Miao, Guang ; Yu, Hao ; Xiao, Jing</creator><creatorcontrib>Chen, Shibin ; Yang, Cuiting ; Zhou, Xiaoying ; Miao, Guang ; Yu, Hao ; Xiao, Jing</creatorcontrib><description>The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well as p‐xylene uptake of 91mg/g, outperforming a series of commercial adsorbents including the industrial benchmark KBaX. The micropore diffusion model was used to give the best fit to the adsorption kinetics of UMC‐xyl with a rate achieved higher than KBaX. The xylene isomer separation was facilitated by the narrow ultramicropore size distributed at 5.8–6.8 Å in UMC‐xyl via a synergistic kinetic and size‐sieving separation mechanism. Breakthrough experiments confirmed the effectiveness of UMC‐xyl in the dynamic selective separation of p‐xylene from xylene isomers, together with superior multiple‐cycle eluent regenerability under the synergistic effects of the “like‐dissolve‐like” principle and π–π interaction. The work opens a new direction of using porous carbon adsorbents for continuous liquid‐phase separation of challenging hydrocarbon isomers.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18246</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adsorbents ; Adsorption ; adsorption separation ; Carbon ; Isomers ; Phase separation ; pore size ; porous carbon ; Selective adsorption ; size‐sieving effect ; Synergistic effect ; ultramicroporosity ; Xylene ; xylene isomers</subject><ispartof>AIChE journal, 2024-01, Vol.70 (1), p.n/a</ispartof><rights>2023 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-7cfe32455ddadf748725c0c4b07bfabd5e1f42b67917da0df784b1032e2051393</cites><orcidid>0000-0002-7006-6211 ; 0000-0003-2862-8054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.18246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.18246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Chen, Shibin</creatorcontrib><creatorcontrib>Yang, Cuiting</creatorcontrib><creatorcontrib>Zhou, Xiaoying</creatorcontrib><creatorcontrib>Miao, Guang</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><title>Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres</title><title>AIChE journal</title><description>The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well as p‐xylene uptake of 91mg/g, outperforming a series of commercial adsorbents including the industrial benchmark KBaX. The micropore diffusion model was used to give the best fit to the adsorption kinetics of UMC‐xyl with a rate achieved higher than KBaX. The xylene isomer separation was facilitated by the narrow ultramicropore size distributed at 5.8–6.8 Å in UMC‐xyl via a synergistic kinetic and size‐sieving separation mechanism. Breakthrough experiments confirmed the effectiveness of UMC‐xyl in the dynamic selective separation of p‐xylene from xylene isomers, together with superior multiple‐cycle eluent regenerability under the synergistic effects of the “like‐dissolve‐like” principle and π–π interaction. The work opens a new direction of using porous carbon adsorbents for continuous liquid‐phase separation of challenging hydrocarbon isomers.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>adsorption separation</subject><subject>Carbon</subject><subject>Isomers</subject><subject>Phase separation</subject><subject>pore size</subject><subject>porous carbon</subject><subject>Selective adsorption</subject><subject>size‐sieving effect</subject><subject>Synergistic effect</subject><subject>ultramicroporosity</subject><subject>Xylene</subject><subject>xylene isomers</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtLZj18mIKi6VKrGAxGY59onqKo1TOwG68Qg8I0-CIaxM1rG-c9GP0CUlM0oIm2tnZrRgfHGEJlRwmYmSiGM0IYTQLH3QU3QW4zZVTBZsgl7Wbj84-_Xx2W10BByhAdO7V8DaRh-63vkW-xq_HxpoAbvodxAidi0emj7onTPBdz74IWKjQ5Vw7DYQIJ6jk1o3ES7-3il6vrt9Wj5k68f71fJmnRkm5CKTpoaccSGs1baWvJBMGGJ4RWRV68oKoDVn1UKWVFpNEil4RUnOgBFB8zKfoqtxbhf8foDYq60fQptWKlaSXBSESp7U9ajSuTEGqFUX3E6Hg6JE_QSnUnDqN7hk56N9cw0c_ofqZrUcO74B44lxXQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Chen, Shibin</creator><creator>Yang, Cuiting</creator><creator>Zhou, Xiaoying</creator><creator>Miao, Guang</creator><creator>Yu, Hao</creator><creator>Xiao, Jing</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7006-6211</orcidid><orcidid>https://orcid.org/0000-0003-2862-8054</orcidid></search><sort><creationdate>202401</creationdate><title>Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres</title><author>Chen, Shibin ; Yang, Cuiting ; Zhou, Xiaoying ; Miao, Guang ; Yu, Hao ; Xiao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-7cfe32455ddadf748725c0c4b07bfabd5e1f42b67917da0df784b1032e2051393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>adsorption separation</topic><topic>Carbon</topic><topic>Isomers</topic><topic>Phase separation</topic><topic>pore size</topic><topic>porous carbon</topic><topic>Selective adsorption</topic><topic>size‐sieving effect</topic><topic>Synergistic effect</topic><topic>ultramicroporosity</topic><topic>Xylene</topic><topic>xylene isomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shibin</creatorcontrib><creatorcontrib>Yang, Cuiting</creatorcontrib><creatorcontrib>Zhou, Xiaoying</creatorcontrib><creatorcontrib>Miao, Guang</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shibin</au><au>Yang, Cuiting</au><au>Zhou, Xiaoying</au><au>Miao, Guang</au><au>Yu, Hao</au><au>Xiao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres</atitle><jtitle>AIChE journal</jtitle><date>2024-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well as p‐xylene uptake of 91mg/g, outperforming a series of commercial adsorbents including the industrial benchmark KBaX. The micropore diffusion model was used to give the best fit to the adsorption kinetics of UMC‐xyl with a rate achieved higher than KBaX. The xylene isomer separation was facilitated by the narrow ultramicropore size distributed at 5.8–6.8 Å in UMC‐xyl via a synergistic kinetic and size‐sieving separation mechanism. Breakthrough experiments confirmed the effectiveness of UMC‐xyl in the dynamic selective separation of p‐xylene from xylene isomers, together with superior multiple‐cycle eluent regenerability under the synergistic effects of the “like‐dissolve‐like” principle and π–π interaction. The work opens a new direction of using porous carbon adsorbents for continuous liquid‐phase separation of challenging hydrocarbon isomers.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.18246</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7006-6211</orcidid><orcidid>https://orcid.org/0000-0003-2862-8054</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2024-01, Vol.70 (1), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2903580174 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adsorbents Adsorption adsorption separation Carbon Isomers Phase separation pore size porous carbon Selective adsorption size‐sieving effect Synergistic effect ultramicroporosity Xylene xylene isomers |
title | Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%E2%80%90phase%20selective%20adsorption%20of%20xylene%20isomers%20in%20ultramicroporous%20carbon%20spheres&rft.jtitle=AIChE%20journal&rft.au=Chen,%20Shibin&rft.date=2024-01&rft.volume=70&rft.issue=1&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18246&rft_dat=%3Cproquest_cross%3E2903580174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903580174&rft_id=info:pmid/&rfr_iscdi=true |