Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres

The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2024-01, Vol.70 (1), p.n/a
Hauptverfasser: Chen, Shibin, Yang, Cuiting, Zhou, Xiaoying, Miao, Guang, Yu, Hao, Xiao, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title AIChE journal
container_volume 70
creator Chen, Shibin
Yang, Cuiting
Zhou, Xiaoying
Miao, Guang
Yu, Hao
Xiao, Jing
description The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well as p‐xylene uptake of 91mg/g, outperforming a series of commercial adsorbents including the industrial benchmark KBaX. The micropore diffusion model was used to give the best fit to the adsorption kinetics of UMC‐xyl with a rate achieved higher than KBaX. The xylene isomer separation was facilitated by the narrow ultramicropore size distributed at 5.8–6.8 Å in UMC‐xyl via a synergistic kinetic and size‐sieving separation mechanism. Breakthrough experiments confirmed the effectiveness of UMC‐xyl in the dynamic selective separation of p‐xylene from xylene isomers, together with superior multiple‐cycle eluent regenerability under the synergistic effects of the “like‐dissolve‐like” principle and π–π interaction. The work opens a new direction of using porous carbon adsorbents for continuous liquid‐phase separation of challenging hydrocarbon isomers.
doi_str_mv 10.1002/aic.18246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2903580174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903580174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-7cfe32455ddadf748725c0c4b07bfabd5e1f42b67917da0df784b1032e2051393</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtLZj18mIKi6VKrGAxGY59onqKo1TOwG68Qg8I0-CIaxM1rG-c9GP0CUlM0oIm2tnZrRgfHGEJlRwmYmSiGM0IYTQLH3QU3QW4zZVTBZsgl7Wbj84-_Xx2W10BByhAdO7V8DaRh-63vkW-xq_HxpoAbvodxAidi0emj7onTPBdz74IWKjQ5Vw7DYQIJ6jk1o3ES7-3il6vrt9Wj5k68f71fJmnRkm5CKTpoaccSGs1baWvJBMGGJ4RWRV68oKoDVn1UKWVFpNEil4RUnOgBFB8zKfoqtxbhf8foDYq60fQptWKlaSXBSESp7U9ajSuTEGqFUX3E6Hg6JE_QSnUnDqN7hk56N9cw0c_ofqZrUcO74B44lxXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903580174</pqid></control><display><type>article</type><title>Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Shibin ; Yang, Cuiting ; Zhou, Xiaoying ; Miao, Guang ; Yu, Hao ; Xiao, Jing</creator><creatorcontrib>Chen, Shibin ; Yang, Cuiting ; Zhou, Xiaoying ; Miao, Guang ; Yu, Hao ; Xiao, Jing</creatorcontrib><description>The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well as p‐xylene uptake of 91mg/g, outperforming a series of commercial adsorbents including the industrial benchmark KBaX. The micropore diffusion model was used to give the best fit to the adsorption kinetics of UMC‐xyl with a rate achieved higher than KBaX. The xylene isomer separation was facilitated by the narrow ultramicropore size distributed at 5.8–6.8 Å in UMC‐xyl via a synergistic kinetic and size‐sieving separation mechanism. Breakthrough experiments confirmed the effectiveness of UMC‐xyl in the dynamic selective separation of p‐xylene from xylene isomers, together with superior multiple‐cycle eluent regenerability under the synergistic effects of the “like‐dissolve‐like” principle and π–π interaction. The work opens a new direction of using porous carbon adsorbents for continuous liquid‐phase separation of challenging hydrocarbon isomers.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18246</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adsorbents ; Adsorption ; adsorption separation ; Carbon ; Isomers ; Phase separation ; pore size ; porous carbon ; Selective adsorption ; size‐sieving effect ; Synergistic effect ; ultramicroporosity ; Xylene ; xylene isomers</subject><ispartof>AIChE journal, 2024-01, Vol.70 (1), p.n/a</ispartof><rights>2023 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-7cfe32455ddadf748725c0c4b07bfabd5e1f42b67917da0df784b1032e2051393</cites><orcidid>0000-0002-7006-6211 ; 0000-0003-2862-8054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.18246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.18246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Chen, Shibin</creatorcontrib><creatorcontrib>Yang, Cuiting</creatorcontrib><creatorcontrib>Zhou, Xiaoying</creatorcontrib><creatorcontrib>Miao, Guang</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><title>Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres</title><title>AIChE journal</title><description>The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well as p‐xylene uptake of 91mg/g, outperforming a series of commercial adsorbents including the industrial benchmark KBaX. The micropore diffusion model was used to give the best fit to the adsorption kinetics of UMC‐xyl with a rate achieved higher than KBaX. The xylene isomer separation was facilitated by the narrow ultramicropore size distributed at 5.8–6.8 Å in UMC‐xyl via a synergistic kinetic and size‐sieving separation mechanism. Breakthrough experiments confirmed the effectiveness of UMC‐xyl in the dynamic selective separation of p‐xylene from xylene isomers, together with superior multiple‐cycle eluent regenerability under the synergistic effects of the “like‐dissolve‐like” principle and π–π interaction. The work opens a new direction of using porous carbon adsorbents for continuous liquid‐phase separation of challenging hydrocarbon isomers.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>adsorption separation</subject><subject>Carbon</subject><subject>Isomers</subject><subject>Phase separation</subject><subject>pore size</subject><subject>porous carbon</subject><subject>Selective adsorption</subject><subject>size‐sieving effect</subject><subject>Synergistic effect</subject><subject>ultramicroporosity</subject><subject>Xylene</subject><subject>xylene isomers</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtLZj18mIKi6VKrGAxGY59onqKo1TOwG68Qg8I0-CIaxM1rG-c9GP0CUlM0oIm2tnZrRgfHGEJlRwmYmSiGM0IYTQLH3QU3QW4zZVTBZsgl7Wbj84-_Xx2W10BByhAdO7V8DaRh-63vkW-xq_HxpoAbvodxAidi0emj7onTPBdz74IWKjQ5Vw7DYQIJ6jk1o3ES7-3il6vrt9Wj5k68f71fJmnRkm5CKTpoaccSGs1baWvJBMGGJ4RWRV68oKoDVn1UKWVFpNEil4RUnOgBFB8zKfoqtxbhf8foDYq60fQptWKlaSXBSESp7U9ajSuTEGqFUX3E6Hg6JE_QSnUnDqN7hk56N9cw0c_ofqZrUcO74B44lxXQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Chen, Shibin</creator><creator>Yang, Cuiting</creator><creator>Zhou, Xiaoying</creator><creator>Miao, Guang</creator><creator>Yu, Hao</creator><creator>Xiao, Jing</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7006-6211</orcidid><orcidid>https://orcid.org/0000-0003-2862-8054</orcidid></search><sort><creationdate>202401</creationdate><title>Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres</title><author>Chen, Shibin ; Yang, Cuiting ; Zhou, Xiaoying ; Miao, Guang ; Yu, Hao ; Xiao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-7cfe32455ddadf748725c0c4b07bfabd5e1f42b67917da0df784b1032e2051393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>adsorption separation</topic><topic>Carbon</topic><topic>Isomers</topic><topic>Phase separation</topic><topic>pore size</topic><topic>porous carbon</topic><topic>Selective adsorption</topic><topic>size‐sieving effect</topic><topic>Synergistic effect</topic><topic>ultramicroporosity</topic><topic>Xylene</topic><topic>xylene isomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shibin</creatorcontrib><creatorcontrib>Yang, Cuiting</creatorcontrib><creatorcontrib>Zhou, Xiaoying</creatorcontrib><creatorcontrib>Miao, Guang</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shibin</au><au>Yang, Cuiting</au><au>Zhou, Xiaoying</au><au>Miao, Guang</au><au>Yu, Hao</au><au>Xiao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres</atitle><jtitle>AIChE journal</jtitle><date>2024-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The objective of this work is to investigate adsorption separation of liquid‐phase xylene isomers using ultramicroporous carbon spheres. The synthesized glucose‐based adsorbent (UMC‐xyl) enabled the challenging separation of liquid‐phase p‐xylene/m‐xylene with an adsorption selectivity of 53 as well as p‐xylene uptake of 91mg/g, outperforming a series of commercial adsorbents including the industrial benchmark KBaX. The micropore diffusion model was used to give the best fit to the adsorption kinetics of UMC‐xyl with a rate achieved higher than KBaX. The xylene isomer separation was facilitated by the narrow ultramicropore size distributed at 5.8–6.8 Å in UMC‐xyl via a synergistic kinetic and size‐sieving separation mechanism. Breakthrough experiments confirmed the effectiveness of UMC‐xyl in the dynamic selective separation of p‐xylene from xylene isomers, together with superior multiple‐cycle eluent regenerability under the synergistic effects of the “like‐dissolve‐like” principle and π–π interaction. The work opens a new direction of using porous carbon adsorbents for continuous liquid‐phase separation of challenging hydrocarbon isomers.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.18246</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7006-6211</orcidid><orcidid>https://orcid.org/0000-0003-2862-8054</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2024-01, Vol.70 (1), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2903580174
source Wiley Online Library Journals Frontfile Complete
subjects Adsorbents
Adsorption
adsorption separation
Carbon
Isomers
Phase separation
pore size
porous carbon
Selective adsorption
size‐sieving effect
Synergistic effect
ultramicroporosity
Xylene
xylene isomers
title Liquid‐phase selective adsorption of xylene isomers in ultramicroporous carbon spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%E2%80%90phase%20selective%20adsorption%20of%20xylene%20isomers%20in%20ultramicroporous%20carbon%20spheres&rft.jtitle=AIChE%20journal&rft.au=Chen,%20Shibin&rft.date=2024-01&rft.volume=70&rft.issue=1&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18246&rft_dat=%3Cproquest_cross%3E2903580174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903580174&rft_id=info:pmid/&rfr_iscdi=true