Local CR-diffeomorphisms of CR-quadrics of codimension two. I. Standard Hermitian quadrics

Local CR-diffeomorphisms between standard Hermitian quadrics of codimension 2 in C m are treated using a method based on the fundamental theorem of projective geometry. The cases when such diffeomorphisms must be projective are distinguished.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex Analysis and its Synergies 2024-03, Vol.10 (1), Article 1
1. Verfasser: Kruzhilin, N. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Complex Analysis and its Synergies
container_volume 10
creator Kruzhilin, N. G.
description Local CR-diffeomorphisms between standard Hermitian quadrics of codimension 2 in C m are treated using a method based on the fundamental theorem of projective geometry. The cases when such diffeomorphisms must be projective are distinguished.
doi_str_mv 10.1007/s40627-023-00127-5
format Article
fullrecord <record><control><sourceid>gale_C6C</sourceid><recordid>TN_cdi_proquest_journals_2903459710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776740267</galeid><sourcerecordid>A776740267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2245-7548f52045944a441b7f147db1055189bf2e9917fd723b5e9bde1eb3807eac6e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz1sn2WSzeyxFbaEg-AHiJWTzUVO6mzbZIv57067iTeYwk-F9ZiYvQtcYphiA30YKJeE5kCIHwKliZ2hEcM1zTODtPNWM0JyzCl-iSYwbACAcJ3kxQu8rr-Q2mz_l2llrfOvD7sPFNmbeHrv7g9TBqdNTee1a00Xnu6z_9NNsOc2ee9lpGXS2MKF1vZNd9otcoQsrt9FMfvIYvd7fvcwX-erxYTmfrXJFCGXpLlpZRoCymlJJKW64xZTrBgNjuKobS0xdY241J0XDTN1og01TVMCNVKUpxuhmmLsLfn8wsRcbfwhdWilIDUWamz6bVNNBtZZbI1xnfR-kSqFN65TvjHWpP-O85BRIyRNABkAFH2MwVuyCa2X4EhjE0Xcx-C6SkeLku2AJKgYoJnG3NuHvln-obzAfg6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903459710</pqid></control><display><type>article</type><title>Local CR-diffeomorphisms of CR-quadrics of codimension two. I. Standard Hermitian quadrics</title><source>Springer Nature OA Free Journals</source><creator>Kruzhilin, N. G.</creator><creatorcontrib>Kruzhilin, N. G.</creatorcontrib><description>Local CR-diffeomorphisms between standard Hermitian quadrics of codimension 2 in C m are treated using a method based on the fundamental theorem of projective geometry. The cases when such diffeomorphisms must be projective are distinguished.</description><identifier>ISSN: 2524-7581</identifier><identifier>EISSN: 2197-120X</identifier><identifier>DOI: 10.1007/s40627-023-00127-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebraic Geometry ; Analysis ; Dynamical Systems and Ergodic Theory ; Functional Analysis ; Functions of a Complex Variable ; Isomorphism ; Mappings and symmetry in complex and CR geometry ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Projective geometry</subject><ispartof>Complex Analysis and its Synergies, 2024-03, Vol.10 (1), Article 1</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2245-7548f52045944a441b7f147db1055189bf2e9917fd723b5e9bde1eb3807eac6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40627-023-00127-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40627-023-00127-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41125,41493,42194,42562,51324,51581</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/s40627-023-00127-5$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Kruzhilin, N. G.</creatorcontrib><title>Local CR-diffeomorphisms of CR-quadrics of codimension two. I. Standard Hermitian quadrics</title><title>Complex Analysis and its Synergies</title><addtitle>Complex Anal Synerg</addtitle><description>Local CR-diffeomorphisms between standard Hermitian quadrics of codimension 2 in C m are treated using a method based on the fundamental theorem of projective geometry. The cases when such diffeomorphisms must be projective are distinguished.</description><subject>Algebraic Geometry</subject><subject>Analysis</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Functional Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Isomorphism</subject><subject>Mappings and symmetry in complex and CR geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Projective geometry</subject><issn>2524-7581</issn><issn>2197-120X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz1sn2WSzeyxFbaEg-AHiJWTzUVO6mzbZIv57067iTeYwk-F9ZiYvQtcYphiA30YKJeE5kCIHwKliZ2hEcM1zTODtPNWM0JyzCl-iSYwbACAcJ3kxQu8rr-Q2mz_l2llrfOvD7sPFNmbeHrv7g9TBqdNTee1a00Xnu6z_9NNsOc2ee9lpGXS2MKF1vZNd9otcoQsrt9FMfvIYvd7fvcwX-erxYTmfrXJFCGXpLlpZRoCymlJJKW64xZTrBgNjuKobS0xdY241J0XDTN1og01TVMCNVKUpxuhmmLsLfn8wsRcbfwhdWilIDUWamz6bVNNBtZZbI1xnfR-kSqFN65TvjHWpP-O85BRIyRNABkAFH2MwVuyCa2X4EhjE0Xcx-C6SkeLku2AJKgYoJnG3NuHvln-obzAfg6Q</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Kruzhilin, N. G.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20240301</creationdate><title>Local CR-diffeomorphisms of CR-quadrics of codimension two. I. Standard Hermitian quadrics</title><author>Kruzhilin, N. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2245-7548f52045944a441b7f147db1055189bf2e9917fd723b5e9bde1eb3807eac6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Analysis</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Functional Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Isomorphism</topic><topic>Mappings and symmetry in complex and CR geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Projective geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruzhilin, N. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Complex Analysis and its Synergies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kruzhilin, N. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local CR-diffeomorphisms of CR-quadrics of codimension two. I. Standard Hermitian quadrics</atitle><jtitle>Complex Analysis and its Synergies</jtitle><stitle>Complex Anal Synerg</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>10</volume><issue>1</issue><artnum>1</artnum><issn>2524-7581</issn><eissn>2197-120X</eissn><abstract>Local CR-diffeomorphisms between standard Hermitian quadrics of codimension 2 in C m are treated using a method based on the fundamental theorem of projective geometry. The cases when such diffeomorphisms must be projective are distinguished.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40627-023-00127-5</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2524-7581
ispartof Complex Analysis and its Synergies, 2024-03, Vol.10 (1), Article 1
issn 2524-7581
2197-120X
language eng
recordid cdi_proquest_journals_2903459710
source Springer Nature OA Free Journals
subjects Algebraic Geometry
Analysis
Dynamical Systems and Ergodic Theory
Functional Analysis
Functions of a Complex Variable
Isomorphism
Mappings and symmetry in complex and CR geometry
Mathematics
Mathematics and Statistics
Partial Differential Equations
Projective geometry
title Local CR-diffeomorphisms of CR-quadrics of codimension two. I. Standard Hermitian quadrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20CR-diffeomorphisms%20of%20CR-quadrics%20of%20codimension%20two.%20I.%20Standard%20Hermitian%20quadrics&rft.jtitle=Complex%20Analysis%20and%20its%20Synergies&rft.au=Kruzhilin,%20N.%20G.&rft.date=2024-03-01&rft.volume=10&rft.issue=1&rft.artnum=1&rft.issn=2524-7581&rft.eissn=2197-120X&rft_id=info:doi/10.1007/s40627-023-00127-5&rft_dat=%3Cgale_C6C%3EA776740267%3C/gale_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903459710&rft_id=info:pmid/&rft_galeid=A776740267&rfr_iscdi=true