Numerical Investigation of the Influence of the Coolant’s Prandtl Molecular Numbers and the Permeability of the Pipe Wall on Turbulent Heat Transfer

A technique for modeling turbulent flow in a channel with impermeable and permeable walls in the presence of heat supply to the wall is proposed. To close the equations of the boundary layer, a three-parameter differential model of shear turbulence is used, which is supplemented by a transfer equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal engineering 2023-12, Vol.70 (12), p.1029-1040
Hauptverfasser: Lushchik, V. G., Makarova, M. S., Popovich, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1040
container_issue 12
container_start_page 1029
container_title Thermal engineering
container_volume 70
creator Lushchik, V. G.
Makarova, M. S.
Popovich, S. S.
description A technique for modeling turbulent flow in a channel with impermeable and permeable walls in the presence of heat supply to the wall is proposed. To close the equations of the boundary layer, a three-parameter differential model of shear turbulence is used, which is supplemented by a transfer equation for a turbulent heat flux. Calculations are carried out for a developed turbulent flow in a round pipe with impermeable and permeable walls for air and binary gas mixtures with a low molecular Prandtl number with parameters corresponding to those in earlier experiments. The results of studies on the effect of the Prandtl number on heat transfer in a pipe with impermeable walls for a coolant with constant physical properties are consistent with the experimental data and empirical dependences of W.M. Kays and B.S. Petukhov for the Nusselt number in the range of Prandtl numbers of 0.2–0.7. It is shown that a positive pressure gradient arising in a pipe under strong gas suction leads to a violation of the similarity of the velocity and temperature profiles and, as a consequence, to a violation of the Reynolds analogy. The use of the transport equation for a turbulent heat flux makes it possible to take into account the complex dependence of the turbulent Prandtl number on the molecular Prandtl number in the viscous sublayer and in the logarithmic boundary layer. The influence of the variability of thermophysical properties and the turbulent Prandtl number on the characteristics of heat transfer in a pipe is estimated. Thus, the difference between the Nu number determined under the assumption of a constant turbulent Prandtl number and the results obtained in calculations using the equation for turbulent heat flux increases with a decrease in the molecular Prandtl number and an increase in the intensity of gas suction.
doi_str_mv 10.1134/S0040601523120091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2903459136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903459136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-92a34c5997703188abee4f335538cef6cf19e8c0d97beb833a7a0b83683d670c3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3geTXZbHY3RylqC1ULVjwu2XRSt6SbmmSF3nwKwdfzSUytxYN4Guaf__-GGYROKTmnlGUXD4RkJCeUp4ymhAi6h3qUc57kjNB91NuMk838EB15v4htllHeQ-933RJco6TBo_YVfGjmMjS2xVbj8AxR1KaDVsFOGFhrZBs-3z48njjZzoLBt9aA6ox0ONJqcB5H_ds9AbcEWTemCesdYdKsAD9JY3BcM-1c3RloAx6CDHgaiV6DO0YHWhoPJz-1jx6vr6aDYTK-vxkNLseJYjQPiUglyxQXoigIo2Upa4BMM8Y5KxXoXGkqoFRkJooa6pIxWUgSa16yWV4QxfrobMtdOfvSxfOrhe1cG1dWqSAs44KyPLro1qWc9d6BrlauWUq3riipNu-v_rw_ZtJtxkdvOwf3S_4_9AXwP4jX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903459136</pqid></control><display><type>article</type><title>Numerical Investigation of the Influence of the Coolant’s Prandtl Molecular Numbers and the Permeability of the Pipe Wall on Turbulent Heat Transfer</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lushchik, V. G. ; Makarova, M. S. ; Popovich, S. S.</creator><creatorcontrib>Lushchik, V. G. ; Makarova, M. S. ; Popovich, S. S.</creatorcontrib><description>A technique for modeling turbulent flow in a channel with impermeable and permeable walls in the presence of heat supply to the wall is proposed. To close the equations of the boundary layer, a three-parameter differential model of shear turbulence is used, which is supplemented by a transfer equation for a turbulent heat flux. Calculations are carried out for a developed turbulent flow in a round pipe with impermeable and permeable walls for air and binary gas mixtures with a low molecular Prandtl number with parameters corresponding to those in earlier experiments. The results of studies on the effect of the Prandtl number on heat transfer in a pipe with impermeable walls for a coolant with constant physical properties are consistent with the experimental data and empirical dependences of W.M. Kays and B.S. Petukhov for the Nusselt number in the range of Prandtl numbers of 0.2–0.7. It is shown that a positive pressure gradient arising in a pipe under strong gas suction leads to a violation of the similarity of the velocity and temperature profiles and, as a consequence, to a violation of the Reynolds analogy. The use of the transport equation for a turbulent heat flux makes it possible to take into account the complex dependence of the turbulent Prandtl number on the molecular Prandtl number in the viscous sublayer and in the logarithmic boundary layer. The influence of the variability of thermophysical properties and the turbulent Prandtl number on the characteristics of heat transfer in a pipe is estimated. Thus, the difference between the Nu number determined under the assumption of a constant turbulent Prandtl number and the results obtained in calculations using the equation for turbulent heat flux increases with a decrease in the molecular Prandtl number and an increase in the intensity of gas suction.</description><identifier>ISSN: 0040-6015</identifier><identifier>EISSN: 1555-6301</identifier><identifier>DOI: 10.1134/S0040601523120091</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary layers ; Coolants ; Engineering ; Engineering Thermodynamics ; Fluid dynamics ; Fluid flow ; Gas mixtures ; Heat and Mass Transfer ; Heat flux ; Heat transfer ; Mathematical models ; Parameters ; Permeability ; Physical properties ; Pipes ; Prandtl number ; Properties of Working Fluids and Materials ; Suction ; Temperature profiles ; Thermophysical properties ; Transport equations ; Turbulence ; Turbulent flow ; Turbulent heat transfer ; Viscous sublayers</subject><ispartof>Thermal engineering, 2023-12, Vol.70 (12), p.1029-1040</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0040-6015, Thermal Engineering, 2023, Vol. 70, No. 12, pp. 1029–1040. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Teploenergetika.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-92a34c5997703188abee4f335538cef6cf19e8c0d97beb833a7a0b83683d670c3</citedby><cites>FETCH-LOGICAL-c316t-92a34c5997703188abee4f335538cef6cf19e8c0d97beb833a7a0b83683d670c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040601523120091$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040601523120091$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lushchik, V. G.</creatorcontrib><creatorcontrib>Makarova, M. S.</creatorcontrib><creatorcontrib>Popovich, S. S.</creatorcontrib><title>Numerical Investigation of the Influence of the Coolant’s Prandtl Molecular Numbers and the Permeability of the Pipe Wall on Turbulent Heat Transfer</title><title>Thermal engineering</title><addtitle>Therm. Eng</addtitle><description>A technique for modeling turbulent flow in a channel with impermeable and permeable walls in the presence of heat supply to the wall is proposed. To close the equations of the boundary layer, a three-parameter differential model of shear turbulence is used, which is supplemented by a transfer equation for a turbulent heat flux. Calculations are carried out for a developed turbulent flow in a round pipe with impermeable and permeable walls for air and binary gas mixtures with a low molecular Prandtl number with parameters corresponding to those in earlier experiments. The results of studies on the effect of the Prandtl number on heat transfer in a pipe with impermeable walls for a coolant with constant physical properties are consistent with the experimental data and empirical dependences of W.M. Kays and B.S. Petukhov for the Nusselt number in the range of Prandtl numbers of 0.2–0.7. It is shown that a positive pressure gradient arising in a pipe under strong gas suction leads to a violation of the similarity of the velocity and temperature profiles and, as a consequence, to a violation of the Reynolds analogy. The use of the transport equation for a turbulent heat flux makes it possible to take into account the complex dependence of the turbulent Prandtl number on the molecular Prandtl number in the viscous sublayer and in the logarithmic boundary layer. The influence of the variability of thermophysical properties and the turbulent Prandtl number on the characteristics of heat transfer in a pipe is estimated. Thus, the difference between the Nu number determined under the assumption of a constant turbulent Prandtl number and the results obtained in calculations using the equation for turbulent heat flux increases with a decrease in the molecular Prandtl number and an increase in the intensity of gas suction.</description><subject>Boundary layers</subject><subject>Coolants</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Gas mixtures</subject><subject>Heat and Mass Transfer</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Physical properties</subject><subject>Pipes</subject><subject>Prandtl number</subject><subject>Properties of Working Fluids and Materials</subject><subject>Suction</subject><subject>Temperature profiles</subject><subject>Thermophysical properties</subject><subject>Transport equations</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent heat transfer</subject><subject>Viscous sublayers</subject><issn>0040-6015</issn><issn>1555-6301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4C3geTXZbHY3RylqC1ULVjwu2XRSt6SbmmSF3nwKwdfzSUytxYN4Guaf__-GGYROKTmnlGUXD4RkJCeUp4ymhAi6h3qUc57kjNB91NuMk838EB15v4htllHeQ-933RJco6TBo_YVfGjmMjS2xVbj8AxR1KaDVsFOGFhrZBs-3z48njjZzoLBt9aA6ox0ONJqcB5H_ds9AbcEWTemCesdYdKsAD9JY3BcM-1c3RloAx6CDHgaiV6DO0YHWhoPJz-1jx6vr6aDYTK-vxkNLseJYjQPiUglyxQXoigIo2Upa4BMM8Y5KxXoXGkqoFRkJooa6pIxWUgSa16yWV4QxfrobMtdOfvSxfOrhe1cG1dWqSAs44KyPLro1qWc9d6BrlauWUq3riipNu-v_rw_ZtJtxkdvOwf3S_4_9AXwP4jX</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lushchik, V. G.</creator><creator>Makarova, M. S.</creator><creator>Popovich, S. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Numerical Investigation of the Influence of the Coolant’s Prandtl Molecular Numbers and the Permeability of the Pipe Wall on Turbulent Heat Transfer</title><author>Lushchik, V. G. ; Makarova, M. S. ; Popovich, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-92a34c5997703188abee4f335538cef6cf19e8c0d97beb833a7a0b83683d670c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary layers</topic><topic>Coolants</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Gas mixtures</topic><topic>Heat and Mass Transfer</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Physical properties</topic><topic>Pipes</topic><topic>Prandtl number</topic><topic>Properties of Working Fluids and Materials</topic><topic>Suction</topic><topic>Temperature profiles</topic><topic>Thermophysical properties</topic><topic>Transport equations</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent heat transfer</topic><topic>Viscous sublayers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lushchik, V. G.</creatorcontrib><creatorcontrib>Makarova, M. S.</creatorcontrib><creatorcontrib>Popovich, S. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lushchik, V. G.</au><au>Makarova, M. S.</au><au>Popovich, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of the Influence of the Coolant’s Prandtl Molecular Numbers and the Permeability of the Pipe Wall on Turbulent Heat Transfer</atitle><jtitle>Thermal engineering</jtitle><stitle>Therm. Eng</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>70</volume><issue>12</issue><spage>1029</spage><epage>1040</epage><pages>1029-1040</pages><issn>0040-6015</issn><eissn>1555-6301</eissn><abstract>A technique for modeling turbulent flow in a channel with impermeable and permeable walls in the presence of heat supply to the wall is proposed. To close the equations of the boundary layer, a three-parameter differential model of shear turbulence is used, which is supplemented by a transfer equation for a turbulent heat flux. Calculations are carried out for a developed turbulent flow in a round pipe with impermeable and permeable walls for air and binary gas mixtures with a low molecular Prandtl number with parameters corresponding to those in earlier experiments. The results of studies on the effect of the Prandtl number on heat transfer in a pipe with impermeable walls for a coolant with constant physical properties are consistent with the experimental data and empirical dependences of W.M. Kays and B.S. Petukhov for the Nusselt number in the range of Prandtl numbers of 0.2–0.7. It is shown that a positive pressure gradient arising in a pipe under strong gas suction leads to a violation of the similarity of the velocity and temperature profiles and, as a consequence, to a violation of the Reynolds analogy. The use of the transport equation for a turbulent heat flux makes it possible to take into account the complex dependence of the turbulent Prandtl number on the molecular Prandtl number in the viscous sublayer and in the logarithmic boundary layer. The influence of the variability of thermophysical properties and the turbulent Prandtl number on the characteristics of heat transfer in a pipe is estimated. Thus, the difference between the Nu number determined under the assumption of a constant turbulent Prandtl number and the results obtained in calculations using the equation for turbulent heat flux increases with a decrease in the molecular Prandtl number and an increase in the intensity of gas suction.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040601523120091</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6015
ispartof Thermal engineering, 2023-12, Vol.70 (12), p.1029-1040
issn 0040-6015
1555-6301
language eng
recordid cdi_proquest_journals_2903459136
source SpringerLink Journals - AutoHoldings
subjects Boundary layers
Coolants
Engineering
Engineering Thermodynamics
Fluid dynamics
Fluid flow
Gas mixtures
Heat and Mass Transfer
Heat flux
Heat transfer
Mathematical models
Parameters
Permeability
Physical properties
Pipes
Prandtl number
Properties of Working Fluids and Materials
Suction
Temperature profiles
Thermophysical properties
Transport equations
Turbulence
Turbulent flow
Turbulent heat transfer
Viscous sublayers
title Numerical Investigation of the Influence of the Coolant’s Prandtl Molecular Numbers and the Permeability of the Pipe Wall on Turbulent Heat Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20the%20Influence%20of%20the%20Coolant%E2%80%99s%20Prandtl%20Molecular%20Numbers%20and%20the%20Permeability%20of%20the%20Pipe%20Wall%20on%20Turbulent%20Heat%20Transfer&rft.jtitle=Thermal%20engineering&rft.au=Lushchik,%20V.%20G.&rft.date=2023-12-01&rft.volume=70&rft.issue=12&rft.spage=1029&rft.epage=1040&rft.pages=1029-1040&rft.issn=0040-6015&rft.eissn=1555-6301&rft_id=info:doi/10.1134/S0040601523120091&rft_dat=%3Cproquest_cross%3E2903459136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903459136&rft_id=info:pmid/&rfr_iscdi=true