One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes
The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerizati...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2023-12, Vol.224 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Macromolecular chemistry and physics |
container_volume | 224 |
creator | Guo, Kairui Li, Shaoqiao Shi, Zhen Zhou, Xingping Xue, Zhigang |
description | The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability.
Graft copolymer electrolytes (GCPEs) are achieved in one‐step by combining lithium salt‐catalyzed orthogonal polymerizations (radical polymerization and ring‐opening polymerization). The resulting GCPEs show good thermal stability, high room‐temperature ionic conductivity, improved lithium‐ion transference number, and outstanding electrochemical stability window. |
doi_str_mv | 10.1002/macp.202300216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2903201120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903201120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2726-6360972a7eaf967a5fdcaf4dcb255650a79e97e6e9a8150e638d21c8fbd8415b3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU_PTZCbLMrQqVFqorkMmk8CU-WuSInXlI_iMPompU3Tp6t6Te757wwHgFqMJRojcN0r3E4IIjQLzMzDCjOCECsrOY48ISTBl5BJceb9FCGVIpCOwW7Xm6-NzE0wP1119aIyr3lWoutbDeauK2sCF0lUseXwKbq-PM6jaEm5-1N6pGq76UDUnDnYWPjhlQyT6YSOc10YHF0Uw_hpcWFV7c3OqY_C6mL_kj8ly9fCUz5aJJinhCac8fpCo1CgreKqYLbWy01IXhDHOkEqFEanhRqgMM2Q4zUqCdWaLMptiVtAxuBv29q7b7Y0PctvtXRtPSiIQJQhjgqJrMri067x3xsreVY1yB4mRPMYqj7HK31gjIAbgLYZy-Mctn2f5-o_9BhPbfv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903201120</pqid></control><display><type>article</type><title>One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Kairui ; Li, Shaoqiao ; Shi, Zhen ; Zhou, Xingping ; Xue, Zhigang</creator><creatorcontrib>Guo, Kairui ; Li, Shaoqiao ; Shi, Zhen ; Zhou, Xingping ; Xue, Zhigang</creatorcontrib><description>The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability.
Graft copolymer electrolytes (GCPEs) are achieved in one‐step by combining lithium salt‐catalyzed orthogonal polymerizations (radical polymerization and ring‐opening polymerization). The resulting GCPEs show good thermal stability, high room‐temperature ionic conductivity, improved lithium‐ion transference number, and outstanding electrochemical stability window.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.202300216</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Electrolytes ; Ethylene oxide ; graft copolymer electrolyte ; Graft copolymers ; Ion currents ; Lithium ; lithium metal batteries ; Molten salt electrolytes ; Monomers ; orthogonal polymerizations ; Polyethylene glycol ; Polyethylene oxide ; Polymerization ; Polystyrene resins ; Ring opening polymerization ; self‐initiated and self‐catalyzed strategy ; Solid electrolytes ; Tensile stress</subject><ispartof>Macromolecular chemistry and physics, 2023-12, Vol.224 (24), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2726-6360972a7eaf967a5fdcaf4dcb255650a79e97e6e9a8150e638d21c8fbd8415b3</cites><orcidid>0000-0003-2335-9537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.202300216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.202300216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Guo, Kairui</creatorcontrib><creatorcontrib>Li, Shaoqiao</creatorcontrib><creatorcontrib>Shi, Zhen</creatorcontrib><creatorcontrib>Zhou, Xingping</creatorcontrib><creatorcontrib>Xue, Zhigang</creatorcontrib><title>One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes</title><title>Macromolecular chemistry and physics</title><description>The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability.
Graft copolymer electrolytes (GCPEs) are achieved in one‐step by combining lithium salt‐catalyzed orthogonal polymerizations (radical polymerization and ring‐opening polymerization). The resulting GCPEs show good thermal stability, high room‐temperature ionic conductivity, improved lithium‐ion transference number, and outstanding electrochemical stability window.</description><subject>Electrolytes</subject><subject>Ethylene oxide</subject><subject>graft copolymer electrolyte</subject><subject>Graft copolymers</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>lithium metal batteries</subject><subject>Molten salt electrolytes</subject><subject>Monomers</subject><subject>orthogonal polymerizations</subject><subject>Polyethylene glycol</subject><subject>Polyethylene oxide</subject><subject>Polymerization</subject><subject>Polystyrene resins</subject><subject>Ring opening polymerization</subject><subject>self‐initiated and self‐catalyzed strategy</subject><subject>Solid electrolytes</subject><subject>Tensile stress</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU_PTZCbLMrQqVFqorkMmk8CU-WuSInXlI_iMPompU3Tp6t6Te757wwHgFqMJRojcN0r3E4IIjQLzMzDCjOCECsrOY48ISTBl5BJceb9FCGVIpCOwW7Xm6-NzE0wP1119aIyr3lWoutbDeauK2sCF0lUseXwKbq-PM6jaEm5-1N6pGq76UDUnDnYWPjhlQyT6YSOc10YHF0Uw_hpcWFV7c3OqY_C6mL_kj8ly9fCUz5aJJinhCac8fpCo1CgreKqYLbWy01IXhDHOkEqFEanhRqgMM2Q4zUqCdWaLMptiVtAxuBv29q7b7Y0PctvtXRtPSiIQJQhjgqJrMri067x3xsreVY1yB4mRPMYqj7HK31gjIAbgLYZy-Mctn2f5-o_9BhPbfv4</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Guo, Kairui</creator><creator>Li, Shaoqiao</creator><creator>Shi, Zhen</creator><creator>Zhou, Xingping</creator><creator>Xue, Zhigang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2335-9537</orcidid></search><sort><creationdate>202312</creationdate><title>One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes</title><author>Guo, Kairui ; Li, Shaoqiao ; Shi, Zhen ; Zhou, Xingping ; Xue, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2726-6360972a7eaf967a5fdcaf4dcb255650a79e97e6e9a8150e638d21c8fbd8415b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrolytes</topic><topic>Ethylene oxide</topic><topic>graft copolymer electrolyte</topic><topic>Graft copolymers</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>lithium metal batteries</topic><topic>Molten salt electrolytes</topic><topic>Monomers</topic><topic>orthogonal polymerizations</topic><topic>Polyethylene glycol</topic><topic>Polyethylene oxide</topic><topic>Polymerization</topic><topic>Polystyrene resins</topic><topic>Ring opening polymerization</topic><topic>self‐initiated and self‐catalyzed strategy</topic><topic>Solid electrolytes</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Kairui</creatorcontrib><creatorcontrib>Li, Shaoqiao</creatorcontrib><creatorcontrib>Shi, Zhen</creatorcontrib><creatorcontrib>Zhou, Xingping</creatorcontrib><creatorcontrib>Xue, Zhigang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Kairui</au><au>Li, Shaoqiao</au><au>Shi, Zhen</au><au>Zhou, Xingping</au><au>Xue, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2023-12</date><risdate>2023</risdate><volume>224</volume><issue>24</issue><epage>n/a</epage><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability.
Graft copolymer electrolytes (GCPEs) are achieved in one‐step by combining lithium salt‐catalyzed orthogonal polymerizations (radical polymerization and ring‐opening polymerization). The resulting GCPEs show good thermal stability, high room‐temperature ionic conductivity, improved lithium‐ion transference number, and outstanding electrochemical stability window.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.202300216</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2335-9537</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2023-12, Vol.224 (24), p.n/a |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_proquest_journals_2903201120 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Electrolytes Ethylene oxide graft copolymer electrolyte Graft copolymers Ion currents Lithium lithium metal batteries Molten salt electrolytes Monomers orthogonal polymerizations Polyethylene glycol Polyethylene oxide Polymerization Polystyrene resins Ring opening polymerization self‐initiated and self‐catalyzed strategy Solid electrolytes Tensile stress |
title | One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%E2%80%90Step%20Polymerizations%20Enable%20Facile%20Construction%20and%20Structural%20Optimization%20of%20Graft%20Copolymer%20Electrolytes&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Guo,%20Kairui&rft.date=2023-12&rft.volume=224&rft.issue=24&rft.epage=n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.202300216&rft_dat=%3Cproquest_cross%3E2903201120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903201120&rft_id=info:pmid/&rfr_iscdi=true |