One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes

The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular chemistry and physics 2023-12, Vol.224 (24), p.n/a
Hauptverfasser: Guo, Kairui, Li, Shaoqiao, Shi, Zhen, Zhou, Xingping, Xue, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Macromolecular chemistry and physics
container_volume 224
creator Guo, Kairui
Li, Shaoqiao
Shi, Zhen
Zhou, Xingping
Xue, Zhigang
description The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability. Graft copolymer electrolytes (GCPEs) are achieved in one‐step by combining lithium salt‐catalyzed orthogonal polymerizations (radical polymerization and ring‐opening polymerization). The resulting GCPEs show good thermal stability, high room‐temperature ionic conductivity, improved lithium‐ion transference number, and outstanding electrochemical stability window.
doi_str_mv 10.1002/macp.202300216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2903201120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903201120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2726-6360972a7eaf967a5fdcaf4dcb255650a79e97e6e9a8150e638d21c8fbd8415b3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU_PTZCbLMrQqVFqorkMmk8CU-WuSInXlI_iMPompU3Tp6t6Te757wwHgFqMJRojcN0r3E4IIjQLzMzDCjOCECsrOY48ISTBl5BJceb9FCGVIpCOwW7Xm6-NzE0wP1119aIyr3lWoutbDeauK2sCF0lUseXwKbq-PM6jaEm5-1N6pGq76UDUnDnYWPjhlQyT6YSOc10YHF0Uw_hpcWFV7c3OqY_C6mL_kj8ly9fCUz5aJJinhCac8fpCo1CgreKqYLbWy01IXhDHOkEqFEanhRqgMM2Q4zUqCdWaLMptiVtAxuBv29q7b7Y0PctvtXRtPSiIQJQhjgqJrMri067x3xsreVY1yB4mRPMYqj7HK31gjIAbgLYZy-Mctn2f5-o_9BhPbfv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903201120</pqid></control><display><type>article</type><title>One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Kairui ; Li, Shaoqiao ; Shi, Zhen ; Zhou, Xingping ; Xue, Zhigang</creator><creatorcontrib>Guo, Kairui ; Li, Shaoqiao ; Shi, Zhen ; Zhou, Xingping ; Xue, Zhigang</creatorcontrib><description>The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability. Graft copolymer electrolytes (GCPEs) are achieved in one‐step by combining lithium salt‐catalyzed orthogonal polymerizations (radical polymerization and ring‐opening polymerization). The resulting GCPEs show good thermal stability, high room‐temperature ionic conductivity, improved lithium‐ion transference number, and outstanding electrochemical stability window.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.202300216</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Electrolytes ; Ethylene oxide ; graft copolymer electrolyte ; Graft copolymers ; Ion currents ; Lithium ; lithium metal batteries ; Molten salt electrolytes ; Monomers ; orthogonal polymerizations ; Polyethylene glycol ; Polyethylene oxide ; Polymerization ; Polystyrene resins ; Ring opening polymerization ; self‐initiated and self‐catalyzed strategy ; Solid electrolytes ; Tensile stress</subject><ispartof>Macromolecular chemistry and physics, 2023-12, Vol.224 (24), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2726-6360972a7eaf967a5fdcaf4dcb255650a79e97e6e9a8150e638d21c8fbd8415b3</cites><orcidid>0000-0003-2335-9537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.202300216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.202300216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Guo, Kairui</creatorcontrib><creatorcontrib>Li, Shaoqiao</creatorcontrib><creatorcontrib>Shi, Zhen</creatorcontrib><creatorcontrib>Zhou, Xingping</creatorcontrib><creatorcontrib>Xue, Zhigang</creatorcontrib><title>One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes</title><title>Macromolecular chemistry and physics</title><description>The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability. Graft copolymer electrolytes (GCPEs) are achieved in one‐step by combining lithium salt‐catalyzed orthogonal polymerizations (radical polymerization and ring‐opening polymerization). The resulting GCPEs show good thermal stability, high room‐temperature ionic conductivity, improved lithium‐ion transference number, and outstanding electrochemical stability window.</description><subject>Electrolytes</subject><subject>Ethylene oxide</subject><subject>graft copolymer electrolyte</subject><subject>Graft copolymers</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>lithium metal batteries</subject><subject>Molten salt electrolytes</subject><subject>Monomers</subject><subject>orthogonal polymerizations</subject><subject>Polyethylene glycol</subject><subject>Polyethylene oxide</subject><subject>Polymerization</subject><subject>Polystyrene resins</subject><subject>Ring opening polymerization</subject><subject>self‐initiated and self‐catalyzed strategy</subject><subject>Solid electrolytes</subject><subject>Tensile stress</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU_PTZCbLMrQqVFqorkMmk8CU-WuSInXlI_iMPompU3Tp6t6Te757wwHgFqMJRojcN0r3E4IIjQLzMzDCjOCECsrOY48ISTBl5BJceb9FCGVIpCOwW7Xm6-NzE0wP1119aIyr3lWoutbDeauK2sCF0lUseXwKbq-PM6jaEm5-1N6pGq76UDUnDnYWPjhlQyT6YSOc10YHF0Uw_hpcWFV7c3OqY_C6mL_kj8ly9fCUz5aJJinhCac8fpCo1CgreKqYLbWy01IXhDHOkEqFEanhRqgMM2Q4zUqCdWaLMptiVtAxuBv29q7b7Y0PctvtXRtPSiIQJQhjgqJrMri067x3xsreVY1yB4mRPMYqj7HK31gjIAbgLYZy-Mctn2f5-o_9BhPbfv4</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Guo, Kairui</creator><creator>Li, Shaoqiao</creator><creator>Shi, Zhen</creator><creator>Zhou, Xingping</creator><creator>Xue, Zhigang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2335-9537</orcidid></search><sort><creationdate>202312</creationdate><title>One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes</title><author>Guo, Kairui ; Li, Shaoqiao ; Shi, Zhen ; Zhou, Xingping ; Xue, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2726-6360972a7eaf967a5fdcaf4dcb255650a79e97e6e9a8150e638d21c8fbd8415b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrolytes</topic><topic>Ethylene oxide</topic><topic>graft copolymer electrolyte</topic><topic>Graft copolymers</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>lithium metal batteries</topic><topic>Molten salt electrolytes</topic><topic>Monomers</topic><topic>orthogonal polymerizations</topic><topic>Polyethylene glycol</topic><topic>Polyethylene oxide</topic><topic>Polymerization</topic><topic>Polystyrene resins</topic><topic>Ring opening polymerization</topic><topic>self‐initiated and self‐catalyzed strategy</topic><topic>Solid electrolytes</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Kairui</creatorcontrib><creatorcontrib>Li, Shaoqiao</creatorcontrib><creatorcontrib>Shi, Zhen</creatorcontrib><creatorcontrib>Zhou, Xingping</creatorcontrib><creatorcontrib>Xue, Zhigang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Kairui</au><au>Li, Shaoqiao</au><au>Shi, Zhen</au><au>Zhou, Xingping</au><au>Xue, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2023-12</date><risdate>2023</risdate><volume>224</volume><issue>24</issue><epage>n/a</epage><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>The development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability. Graft copolymer electrolytes (GCPEs) are achieved in one‐step by combining lithium salt‐catalyzed orthogonal polymerizations (radical polymerization and ring‐opening polymerization). The resulting GCPEs show good thermal stability, high room‐temperature ionic conductivity, improved lithium‐ion transference number, and outstanding electrochemical stability window.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.202300216</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2335-9537</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1352
ispartof Macromolecular chemistry and physics, 2023-12, Vol.224 (24), p.n/a
issn 1022-1352
1521-3935
language eng
recordid cdi_proquest_journals_2903201120
source Wiley Online Library Journals Frontfile Complete
subjects Electrolytes
Ethylene oxide
graft copolymer electrolyte
Graft copolymers
Ion currents
Lithium
lithium metal batteries
Molten salt electrolytes
Monomers
orthogonal polymerizations
Polyethylene glycol
Polyethylene oxide
Polymerization
Polystyrene resins
Ring opening polymerization
self‐initiated and self‐catalyzed strategy
Solid electrolytes
Tensile stress
title One‐Step Polymerizations Enable Facile Construction and Structural Optimization of Graft Copolymer Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%E2%80%90Step%20Polymerizations%20Enable%20Facile%20Construction%20and%20Structural%20Optimization%20of%20Graft%20Copolymer%20Electrolytes&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Guo,%20Kairui&rft.date=2023-12&rft.volume=224&rft.issue=24&rft.epage=n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.202300216&rft_dat=%3Cproquest_cross%3E2903201120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903201120&rft_id=info:pmid/&rfr_iscdi=true