Rhodamine 6G Dye Adsorption Using Magnetic Nanoparticles Synthesized With the Support of Vernonia Amygdalina Leaf Extract (Bitter Leaf)
This study reports the synthesis of magnetic nanoparticles (MNPs) using the co-precipitation method with the support of Vernonia Amygdalina (VA) (bitter leaf) extract for the efficient sequestration of rhodamine 6G dye (Rhd 6G) from a water-soluble solution. The prepared MNPs were characterized usin...
Gespeichert in:
Veröffentlicht in: | Journal of inorganic and organometallic polymers and materials 2023-12, Vol.33 (12), p.4012-4031 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study reports the synthesis of magnetic nanoparticles (MNPs) using the co-precipitation method with the support of Vernonia Amygdalina (VA) (bitter leaf) extract for the efficient sequestration of rhodamine 6G dye (Rhd 6G) from a water-soluble solution. The prepared MNPs were characterized using Transmission electron microscopy (TEM,) X-ray Diffraction (XRD), Fourier-transform infrared (FTIR) and Ultraviolet–visible (UV–Vis) spectrometry. The average particle sizes from TEM and XRD analyses were 4.81 ± 2.2 nm and 5.61 nm respectively. The sorption of Rhd 6G dye to the MNPs was pH-dependent, with ideal confiscation of dye molecules observed at pH 10 (
∼
91.4
%
)
. The sorption process of Rhd 6G dye was reported to follow the Freundlich (FRH) isotherm model, while the pseudo-first-order model (PFOM) best depicted the sorption process of Rhd 6G dye to the MNPs from the non-linear modelling. The determined sorption capacity of the MNPs was established to be 454 mg.g
−1
. Also, the sorption of Rhd 6G dye to the MNPs was observed to be thermodynamically spontaneous, endothermic and with increasing randomness between the interface of the water-soluble solution and the MNPs. Hence, the prepared MNPs have proven to be an effective potential magnetic sorbent for the removal of cationic dyes from an aqueous solution.
Graphical Abstract |
---|---|
ISSN: | 1574-1443 1574-1451 |
DOI: | 10.1007/s10904-023-02639-3 |