Covalent organic framework crystallization using a continuous flow packed-bed reactor
Flow systems enable in-line synthesis and processing of organic materials in a continuous reaction pathway, which is advantageous for high-throughput and scale-up. In this work, a highly crystalline TAPB-OHPDA covalent organic framework (COF) was directly crystallized under continuous flow condition...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2023-12, Vol.26 (1), p.27-31 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | CrystEngComm |
container_volume | 26 |
creator | Bhagwandin, Dayanni D Dunlap, John H Tran, Ly D Reidell, Alexander Austin, Drake Putnam-Neeb, Amelia A Loveday, Morgan Rao, Rahul Baldwin, Luke A Glavin, Nicholas R |
description | Flow systems enable in-line synthesis and processing of organic materials in a continuous reaction pathway, which is advantageous for high-throughput and scale-up. In this work, a highly crystalline TAPB-OHPDA covalent organic framework (COF) was directly crystallized under continuous flow conditions in as little as 30 minutes. Brunauer-Emmett-Teller (BET) surface analysis reveals high surface areas greater than 1700 m
2
g
−1
can be afforded in 2 hours, resulting in a 36× faster processing time compared to a majority of other reported solvothermal methods. Additionally, the crystalline COF material was also washed with solvent in flow to reduce the required post-processing burden typically performed iteratively during purification and activation. The results presented herein provide foundational knowledge for COF syntheses under packed-bed flow conditions and reveal an opportunity to accelerate the formation and processing of highly crystalline COF materials.
Covalent organic frameworks were crystallized directly in flow, resulting in a substantial decrease in required synthesis and processing time for a diverse class of nanomaterials. |
doi_str_mv | 10.1039/d3ce01030a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2902869914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902869914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-6c92619baaa559aff201a2e228d4cb158e002450a7ca46274dc89caa696f8bf23</originalsourceid><addsrcrecordid>eNpNkM1LwzAchoMoOKcX70LAm1DNV7PmOOr8gIEXdy6_psno1iUzSR3zr7c6UU_ve3h4X3gQuqTklhKu7hquDRkagSM0okLKrCCcH__rp-gsxhUhVFBKRmhR-nfojEvYhyW4VmMbYGN2PqyxDvuYoOvaD0itd7iPrVtiwNq71Lre9xHbzu_wFvTaNFltGhwM6OTDOTqx0EVz8ZNjtHiYvZZP2fzl8bmczjPNCpoyqRWTVNUAkOcKrGWEAjOMFY3QNc0LQwgTOYGJBiHZRDS6UBpAKmmL2jI-RteH3W3wb72JqVr5PrjhsmKKsEIqRcVA3RwoHXyMwdhqG9oNhH1FSfWlrbrn5exb23SArw5wiPqX-9PKPwER1Gpb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902869914</pqid></control><display><type>article</type><title>Covalent organic framework crystallization using a continuous flow packed-bed reactor</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bhagwandin, Dayanni D ; Dunlap, John H ; Tran, Ly D ; Reidell, Alexander ; Austin, Drake ; Putnam-Neeb, Amelia A ; Loveday, Morgan ; Rao, Rahul ; Baldwin, Luke A ; Glavin, Nicholas R</creator><creatorcontrib>Bhagwandin, Dayanni D ; Dunlap, John H ; Tran, Ly D ; Reidell, Alexander ; Austin, Drake ; Putnam-Neeb, Amelia A ; Loveday, Morgan ; Rao, Rahul ; Baldwin, Luke A ; Glavin, Nicholas R</creatorcontrib><description>Flow systems enable in-line synthesis and processing of organic materials in a continuous reaction pathway, which is advantageous for high-throughput and scale-up. In this work, a highly crystalline TAPB-OHPDA covalent organic framework (COF) was directly crystallized under continuous flow conditions in as little as 30 minutes. Brunauer-Emmett-Teller (BET) surface analysis reveals high surface areas greater than 1700 m
2
g
−1
can be afforded in 2 hours, resulting in a 36× faster processing time compared to a majority of other reported solvothermal methods. Additionally, the crystalline COF material was also washed with solvent in flow to reduce the required post-processing burden typically performed iteratively during purification and activation. The results presented herein provide foundational knowledge for COF syntheses under packed-bed flow conditions and reveal an opportunity to accelerate the formation and processing of highly crystalline COF materials.
Covalent organic frameworks were crystallized directly in flow, resulting in a substantial decrease in required synthesis and processing time for a diverse class of nanomaterials.</description><identifier>ISSN: 1466-8033</identifier><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d3ce01030a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Continuous flow ; Crystallization ; Organic materials ; Surface analysis (chemical)</subject><ispartof>CrystEngComm, 2023-12, Vol.26 (1), p.27-31</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-6c92619baaa559aff201a2e228d4cb158e002450a7ca46274dc89caa696f8bf23</citedby><cites>FETCH-LOGICAL-c281t-6c92619baaa559aff201a2e228d4cb158e002450a7ca46274dc89caa696f8bf23</cites><orcidid>0000-0002-0045-3603 ; 0000-0002-6415-0185 ; 0000-0001-8150-2683 ; 0000-0002-7787-238X ; 0009-0002-8842-1741 ; 0000-0003-0048-2786 ; 0000-0002-9447-7509 ; 0009-0007-4221-740X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bhagwandin, Dayanni D</creatorcontrib><creatorcontrib>Dunlap, John H</creatorcontrib><creatorcontrib>Tran, Ly D</creatorcontrib><creatorcontrib>Reidell, Alexander</creatorcontrib><creatorcontrib>Austin, Drake</creatorcontrib><creatorcontrib>Putnam-Neeb, Amelia A</creatorcontrib><creatorcontrib>Loveday, Morgan</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Baldwin, Luke A</creatorcontrib><creatorcontrib>Glavin, Nicholas R</creatorcontrib><title>Covalent organic framework crystallization using a continuous flow packed-bed reactor</title><title>CrystEngComm</title><description>Flow systems enable in-line synthesis and processing of organic materials in a continuous reaction pathway, which is advantageous for high-throughput and scale-up. In this work, a highly crystalline TAPB-OHPDA covalent organic framework (COF) was directly crystallized under continuous flow conditions in as little as 30 minutes. Brunauer-Emmett-Teller (BET) surface analysis reveals high surface areas greater than 1700 m
2
g
−1
can be afforded in 2 hours, resulting in a 36× faster processing time compared to a majority of other reported solvothermal methods. Additionally, the crystalline COF material was also washed with solvent in flow to reduce the required post-processing burden typically performed iteratively during purification and activation. The results presented herein provide foundational knowledge for COF syntheses under packed-bed flow conditions and reveal an opportunity to accelerate the formation and processing of highly crystalline COF materials.
Covalent organic frameworks were crystallized directly in flow, resulting in a substantial decrease in required synthesis and processing time for a diverse class of nanomaterials.</description><subject>Continuous flow</subject><subject>Crystallization</subject><subject>Organic materials</subject><subject>Surface analysis (chemical)</subject><issn>1466-8033</issn><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LwzAchoMoOKcX70LAm1DNV7PmOOr8gIEXdy6_psno1iUzSR3zr7c6UU_ve3h4X3gQuqTklhKu7hquDRkagSM0okLKrCCcH__rp-gsxhUhVFBKRmhR-nfojEvYhyW4VmMbYGN2PqyxDvuYoOvaD0itd7iPrVtiwNq71Lre9xHbzu_wFvTaNFltGhwM6OTDOTqx0EVz8ZNjtHiYvZZP2fzl8bmczjPNCpoyqRWTVNUAkOcKrGWEAjOMFY3QNc0LQwgTOYGJBiHZRDS6UBpAKmmL2jI-RteH3W3wb72JqVr5PrjhsmKKsEIqRcVA3RwoHXyMwdhqG9oNhH1FSfWlrbrn5exb23SArw5wiPqX-9PKPwER1Gpb</recordid><startdate>20231218</startdate><enddate>20231218</enddate><creator>Bhagwandin, Dayanni D</creator><creator>Dunlap, John H</creator><creator>Tran, Ly D</creator><creator>Reidell, Alexander</creator><creator>Austin, Drake</creator><creator>Putnam-Neeb, Amelia A</creator><creator>Loveday, Morgan</creator><creator>Rao, Rahul</creator><creator>Baldwin, Luke A</creator><creator>Glavin, Nicholas R</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0045-3603</orcidid><orcidid>https://orcid.org/0000-0002-6415-0185</orcidid><orcidid>https://orcid.org/0000-0001-8150-2683</orcidid><orcidid>https://orcid.org/0000-0002-7787-238X</orcidid><orcidid>https://orcid.org/0009-0002-8842-1741</orcidid><orcidid>https://orcid.org/0000-0003-0048-2786</orcidid><orcidid>https://orcid.org/0000-0002-9447-7509</orcidid><orcidid>https://orcid.org/0009-0007-4221-740X</orcidid></search><sort><creationdate>20231218</creationdate><title>Covalent organic framework crystallization using a continuous flow packed-bed reactor</title><author>Bhagwandin, Dayanni D ; Dunlap, John H ; Tran, Ly D ; Reidell, Alexander ; Austin, Drake ; Putnam-Neeb, Amelia A ; Loveday, Morgan ; Rao, Rahul ; Baldwin, Luke A ; Glavin, Nicholas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-6c92619baaa559aff201a2e228d4cb158e002450a7ca46274dc89caa696f8bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Continuous flow</topic><topic>Crystallization</topic><topic>Organic materials</topic><topic>Surface analysis (chemical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhagwandin, Dayanni D</creatorcontrib><creatorcontrib>Dunlap, John H</creatorcontrib><creatorcontrib>Tran, Ly D</creatorcontrib><creatorcontrib>Reidell, Alexander</creatorcontrib><creatorcontrib>Austin, Drake</creatorcontrib><creatorcontrib>Putnam-Neeb, Amelia A</creatorcontrib><creatorcontrib>Loveday, Morgan</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Baldwin, Luke A</creatorcontrib><creatorcontrib>Glavin, Nicholas R</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhagwandin, Dayanni D</au><au>Dunlap, John H</au><au>Tran, Ly D</au><au>Reidell, Alexander</au><au>Austin, Drake</au><au>Putnam-Neeb, Amelia A</au><au>Loveday, Morgan</au><au>Rao, Rahul</au><au>Baldwin, Luke A</au><au>Glavin, Nicholas R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covalent organic framework crystallization using a continuous flow packed-bed reactor</atitle><jtitle>CrystEngComm</jtitle><date>2023-12-18</date><risdate>2023</risdate><volume>26</volume><issue>1</issue><spage>27</spage><epage>31</epage><pages>27-31</pages><issn>1466-8033</issn><eissn>1466-8033</eissn><abstract>Flow systems enable in-line synthesis and processing of organic materials in a continuous reaction pathway, which is advantageous for high-throughput and scale-up. In this work, a highly crystalline TAPB-OHPDA covalent organic framework (COF) was directly crystallized under continuous flow conditions in as little as 30 minutes. Brunauer-Emmett-Teller (BET) surface analysis reveals high surface areas greater than 1700 m
2
g
−1
can be afforded in 2 hours, resulting in a 36× faster processing time compared to a majority of other reported solvothermal methods. Additionally, the crystalline COF material was also washed with solvent in flow to reduce the required post-processing burden typically performed iteratively during purification and activation. The results presented herein provide foundational knowledge for COF syntheses under packed-bed flow conditions and reveal an opportunity to accelerate the formation and processing of highly crystalline COF materials.
Covalent organic frameworks were crystallized directly in flow, resulting in a substantial decrease in required synthesis and processing time for a diverse class of nanomaterials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ce01030a</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0045-3603</orcidid><orcidid>https://orcid.org/0000-0002-6415-0185</orcidid><orcidid>https://orcid.org/0000-0001-8150-2683</orcidid><orcidid>https://orcid.org/0000-0002-7787-238X</orcidid><orcidid>https://orcid.org/0009-0002-8842-1741</orcidid><orcidid>https://orcid.org/0000-0003-0048-2786</orcidid><orcidid>https://orcid.org/0000-0002-9447-7509</orcidid><orcidid>https://orcid.org/0009-0007-4221-740X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-8033 |
ispartof | CrystEngComm, 2023-12, Vol.26 (1), p.27-31 |
issn | 1466-8033 1466-8033 |
language | eng |
recordid | cdi_proquest_journals_2902869914 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Continuous flow Crystallization Organic materials Surface analysis (chemical) |
title | Covalent organic framework crystallization using a continuous flow packed-bed reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covalent%20organic%20framework%20crystallization%20using%20a%20continuous%20flow%20packed-bed%20reactor&rft.jtitle=CrystEngComm&rft.au=Bhagwandin,%20Dayanni%20D&rft.date=2023-12-18&rft.volume=26&rft.issue=1&rft.spage=27&rft.epage=31&rft.pages=27-31&rft.issn=1466-8033&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d3ce01030a&rft_dat=%3Cproquest_rsc_p%3E2902869914%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902869914&rft_id=info:pmid/&rfr_iscdi=true |