On the representability of actions of Leibniz algebras and Poisson algebras

In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2023-11, Vol.66 (4), p.998-1021
Hauptverfasser: Cigoli, Alan S., Mancini, Manuel, Metere, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1021
container_issue 4
container_start_page 998
container_title Proceedings of the Edinburgh Mathematical Society
container_volume 66
creator Cigoli, Alan S.
Mancini, Manuel
Metere, Giuseppe
description In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.
doi_str_mv 10.1017/S0013091523000548
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2902857212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091523000548</cupid><sourcerecordid>2902857212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-bb26f5e78efe69ab69422482931f6e5337084d25d9cb868a06f3face69081de83</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek0yylOILByqo6yGZuakpbVKT6aL-emdo0YW4upd7vnMuHIQuKbmmhFY3r4RQTjQVjBNCRKmO0ISWsiy44voYTUa5GPVTdJbzcmCqStAJep4H3H8ATrBJkCH0xvqV73c4Omza3seQx7UGb4P_wma1AJtMxiZ0-CX6nGP4OZ6jE2dWGS4Oc4re7-_eZo9FPX94mt3WRcsl6QtrmXQCKgUOpDZW6pKxUjHNqZMgOK-IKjsmOt1aJZUh0nFn2oElinag-BRd7XM3KX5uIffNMm5TGF42TBOmRMUoGyi6p9oUc07gmk3ya5N2DSXN2Fnzp7PBww8es7bJdwv4jf7f9Q0uAm0F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902857212</pqid></control><display><type>article</type><title>On the representability of actions of Leibniz algebras and Poisson algebras</title><source>Cambridge Journals</source><creator>Cigoli, Alan S. ; Mancini, Manuel ; Metere, Giuseppe</creator><creatorcontrib>Cigoli, Alan S. ; Mancini, Manuel ; Metere, Giuseppe</creatorcontrib><description>In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091523000548</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2023-11, Vol.66 (4), p.998-1021</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-bb26f5e78efe69ab69422482931f6e5337084d25d9cb868a06f3face69081de83</citedby><cites>FETCH-LOGICAL-c360t-bb26f5e78efe69ab69422482931f6e5337084d25d9cb868a06f3face69081de83</cites><orcidid>0000-0003-1839-3626 ; 0000-0002-5181-5096 ; 0000-0003-2142-6193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091523000548/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Cigoli, Alan S.</creatorcontrib><creatorcontrib>Mancini, Manuel</creatorcontrib><creatorcontrib>Metere, Giuseppe</creatorcontrib><title>On the representability of actions of Leibniz algebras and Poisson algebras</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.</description><subject>Algebra</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek0yylOILByqo6yGZuakpbVKT6aL-emdo0YW4upd7vnMuHIQuKbmmhFY3r4RQTjQVjBNCRKmO0ISWsiy44voYTUa5GPVTdJbzcmCqStAJep4H3H8ATrBJkCH0xvqV73c4Omza3seQx7UGb4P_wma1AJtMxiZ0-CX6nGP4OZ6jE2dWGS4Oc4re7-_eZo9FPX94mt3WRcsl6QtrmXQCKgUOpDZW6pKxUjHNqZMgOK-IKjsmOt1aJZUh0nFn2oElinag-BRd7XM3KX5uIffNMm5TGF42TBOmRMUoGyi6p9oUc07gmk3ya5N2DSXN2Fnzp7PBww8es7bJdwv4jf7f9Q0uAm0F</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Cigoli, Alan S.</creator><creator>Mancini, Manuel</creator><creator>Metere, Giuseppe</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1839-3626</orcidid><orcidid>https://orcid.org/0000-0002-5181-5096</orcidid><orcidid>https://orcid.org/0000-0003-2142-6193</orcidid></search><sort><creationdate>20231101</creationdate><title>On the representability of actions of Leibniz algebras and Poisson algebras</title><author>Cigoli, Alan S. ; Mancini, Manuel ; Metere, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-bb26f5e78efe69ab69422482931f6e5337084d25d9cb868a06f3face69081de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cigoli, Alan S.</creatorcontrib><creatorcontrib>Mancini, Manuel</creatorcontrib><creatorcontrib>Metere, Giuseppe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cigoli, Alan S.</au><au>Mancini, Manuel</au><au>Metere, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the representability of actions of Leibniz algebras and Poisson algebras</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>66</volume><issue>4</issue><spage>998</spage><epage>1021</epage><pages>998-1021</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091523000548</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1839-3626</orcidid><orcidid>https://orcid.org/0000-0002-5181-5096</orcidid><orcidid>https://orcid.org/0000-0003-2142-6193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-0915
ispartof Proceedings of the Edinburgh Mathematical Society, 2023-11, Vol.66 (4), p.998-1021
issn 0013-0915
1464-3839
language eng
recordid cdi_proquest_journals_2902857212
source Cambridge Journals
subjects Algebra
title On the representability of actions of Leibniz algebras and Poisson algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20representability%20of%20actions%20of%20Leibniz%20algebras%20and%20Poisson%20algebras&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Cigoli,%20Alan%20S.&rft.date=2023-11-01&rft.volume=66&rft.issue=4&rft.spage=998&rft.epage=1021&rft.pages=998-1021&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091523000548&rft_dat=%3Cproquest_cross%3E2902857212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902857212&rft_id=info:pmid/&rft_cupid=10_1017_S0013091523000548&rfr_iscdi=true