On the representability of actions of Leibniz algebras and Poisson algebras
In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2023-11, Vol.66 (4), p.998-1021 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1021 |
---|---|
container_issue | 4 |
container_start_page | 998 |
container_title | Proceedings of the Edinburgh Mathematical Society |
container_volume | 66 |
creator | Cigoli, Alan S. Mancini, Manuel Metere, Giuseppe |
description | In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable. |
doi_str_mv | 10.1017/S0013091523000548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2902857212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091523000548</cupid><sourcerecordid>2902857212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-bb26f5e78efe69ab69422482931f6e5337084d25d9cb868a06f3face69081de83</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek0yylOILByqo6yGZuakpbVKT6aL-emdo0YW4upd7vnMuHIQuKbmmhFY3r4RQTjQVjBNCRKmO0ISWsiy44voYTUa5GPVTdJbzcmCqStAJep4H3H8ATrBJkCH0xvqV73c4Omza3seQx7UGb4P_wma1AJtMxiZ0-CX6nGP4OZ6jE2dWGS4Oc4re7-_eZo9FPX94mt3WRcsl6QtrmXQCKgUOpDZW6pKxUjHNqZMgOK-IKjsmOt1aJZUh0nFn2oElinag-BRd7XM3KX5uIffNMm5TGF42TBOmRMUoGyi6p9oUc07gmk3ya5N2DSXN2Fnzp7PBww8es7bJdwv4jf7f9Q0uAm0F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902857212</pqid></control><display><type>article</type><title>On the representability of actions of Leibniz algebras and Poisson algebras</title><source>Cambridge Journals</source><creator>Cigoli, Alan S. ; Mancini, Manuel ; Metere, Giuseppe</creator><creatorcontrib>Cigoli, Alan S. ; Mancini, Manuel ; Metere, Giuseppe</creatorcontrib><description>In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091523000548</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2023-11, Vol.66 (4), p.998-1021</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-bb26f5e78efe69ab69422482931f6e5337084d25d9cb868a06f3face69081de83</citedby><cites>FETCH-LOGICAL-c360t-bb26f5e78efe69ab69422482931f6e5337084d25d9cb868a06f3face69081de83</cites><orcidid>0000-0003-1839-3626 ; 0000-0002-5181-5096 ; 0000-0003-2142-6193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091523000548/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Cigoli, Alan S.</creatorcontrib><creatorcontrib>Mancini, Manuel</creatorcontrib><creatorcontrib>Metere, Giuseppe</creatorcontrib><title>On the representability of actions of Leibniz algebras and Poisson algebras</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.</description><subject>Algebra</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek0yylOILByqo6yGZuakpbVKT6aL-emdo0YW4upd7vnMuHIQuKbmmhFY3r4RQTjQVjBNCRKmO0ISWsiy44voYTUa5GPVTdJbzcmCqStAJep4H3H8ATrBJkCH0xvqV73c4Omza3seQx7UGb4P_wma1AJtMxiZ0-CX6nGP4OZ6jE2dWGS4Oc4re7-_eZo9FPX94mt3WRcsl6QtrmXQCKgUOpDZW6pKxUjHNqZMgOK-IKjsmOt1aJZUh0nFn2oElinag-BRd7XM3KX5uIffNMm5TGF42TBOmRMUoGyi6p9oUc07gmk3ya5N2DSXN2Fnzp7PBww8es7bJdwv4jf7f9Q0uAm0F</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Cigoli, Alan S.</creator><creator>Mancini, Manuel</creator><creator>Metere, Giuseppe</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1839-3626</orcidid><orcidid>https://orcid.org/0000-0002-5181-5096</orcidid><orcidid>https://orcid.org/0000-0003-2142-6193</orcidid></search><sort><creationdate>20231101</creationdate><title>On the representability of actions of Leibniz algebras and Poisson algebras</title><author>Cigoli, Alan S. ; Mancini, Manuel ; Metere, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-bb26f5e78efe69ab69422482931f6e5337084d25d9cb868a06f3face69081de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cigoli, Alan S.</creatorcontrib><creatorcontrib>Mancini, Manuel</creatorcontrib><creatorcontrib>Metere, Giuseppe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cigoli, Alan S.</au><au>Mancini, Manuel</au><au>Metere, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the representability of actions of Leibniz algebras and Poisson algebras</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>66</volume><issue>4</issue><spage>998</spage><epage>1021</epage><pages>998-1021</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091523000548</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1839-3626</orcidid><orcidid>https://orcid.org/0000-0002-5181-5096</orcidid><orcidid>https://orcid.org/0000-0003-2142-6193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-0915 |
ispartof | Proceedings of the Edinburgh Mathematical Society, 2023-11, Vol.66 (4), p.998-1021 |
issn | 0013-0915 1464-3839 |
language | eng |
recordid | cdi_proquest_journals_2902857212 |
source | Cambridge Journals |
subjects | Algebra |
title | On the representability of actions of Leibniz algebras and Poisson algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20representability%20of%20actions%20of%20Leibniz%20algebras%20and%20Poisson%20algebras&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Cigoli,%20Alan%20S.&rft.date=2023-11-01&rft.volume=66&rft.issue=4&rft.spage=998&rft.epage=1021&rft.pages=998-1021&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091523000548&rft_dat=%3Cproquest_cross%3E2902857212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902857212&rft_id=info:pmid/&rft_cupid=10_1017_S0013091523000548&rfr_iscdi=true |