Visible light-driven photocatalyst δ‑Bi7VO13 nanoparticles synthesized by thermal plasma

Understanding the electronic structure of photocatalysts is crucial for enhancing their efficiency. In this study, we have successfully synthesized novel monoclinic bismuth vanadate (Bi 7 VO 13 ) nanoparticles using the gas phase condensation technique, with an average particle size of 40 nm. To inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-12, Vol.34 (36), p.2326, Article 2326
Hauptverfasser: Kekade, Shankar S., Raut, Suyog A., Choudhary, Ram J., Barve, Trupti S., Mathe, Vikas L., Phase, Deodatta M., Thiry, Damien, Patil, Shankar I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 36
container_start_page 2326
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Kekade, Shankar S.
Raut, Suyog A.
Choudhary, Ram J.
Barve, Trupti S.
Mathe, Vikas L.
Phase, Deodatta M.
Thiry, Damien
Patil, Shankar I.
description Understanding the electronic structure of photocatalysts is crucial for enhancing their efficiency. In this study, we have successfully synthesized novel monoclinic bismuth vanadate (Bi 7 VO 13 ) nanoparticles using the gas phase condensation technique, with an average particle size of 40 nm. To investigate the crystallographic structure of the as-synthesized nanoparticles, we conducted X-ray diffraction (XRD) experiments. Additionally, we employed advanced characterization techniques to provide a detailed analysis of the electronic structure of Bi 7 VO 13 nanoparticles. This study presents the first report on the electronic structure of Bi 7 VO 13 nanoparticles using the aforementioned spectroscopic methods. Remarkably, the investigation revealed that the valence band maximum (VB) and conduction band minimum (CB) are dominated by O 2p and V 3d states, respectively. Moreover, X-ray absorption spectroscopy (XAS) reveals splitting the V 3d conduction band state into a triplet d-manifold at the V L-edge and O K-edge. This splitting arises from the lattice distortion induced by lone pairs, which gives rise to a band gap of 2.28 eV. Under visible light irradiation, the Bi 7 VO 13 nanoparticles exhibit efficient visible light absorption, highlighting their potential for photocatalytic applications. Notably, our experiments demonstrated outstanding photodegradation properties of methylene blue, serving as a model effluent, further underscoring the photocatalytic progress of Bi 7 VO 13 nanoparticles. In conclusion, this research explains the functioning of Bi 7 VO 13 photocatalysts and opens the doors for utilizing their potential to generate a cleaner and brighter future.
doi_str_mv 10.1007/s10854-023-11732-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2902591124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902591124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d7bf3c5ecf71a0a5632d6b83a973222455b2ee64d22b87941e54b3c3c5bfce43</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOprrZGapxRsUuikiuAhJJtOmTGfGZCqMK1_Bd_E5fAifxNQK7lyds_i__3A-AE4JPicYy4tIcC44wpQhQiSjqNgDIyIkQzynj_tghAshEReUHoKjGFcY44yzfASeHnz0pnaw9otlj8rgX1wDu2Xbt1b3uh5iDz8_vt7er7x8mBEGG920nQ69t7WLMA5Nv3TRv7oSmgGmPax1Dbtax7U-BgeVrqM7-Z1jML-5nk_u0HR2ez-5nCJLJU43pamYFc5WkmisRcZomZmc6SI9QikXwlDnMl5SanJZcOIEN8wmxFTWcTYGZ7vaLrTPGxd7tWo3oUkXFS0wFQUhdJuiu5QNbYzBVaoLfq3DoAhWW4dq51Alh-rHoSoSxHZQTOFm4cJf9T_UNy8mdw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902591124</pqid></control><display><type>article</type><title>Visible light-driven photocatalyst δ‑Bi7VO13 nanoparticles synthesized by thermal plasma</title><source>Springer Nature - Complete Springer Journals</source><creator>Kekade, Shankar S. ; Raut, Suyog A. ; Choudhary, Ram J. ; Barve, Trupti S. ; Mathe, Vikas L. ; Phase, Deodatta M. ; Thiry, Damien ; Patil, Shankar I.</creator><creatorcontrib>Kekade, Shankar S. ; Raut, Suyog A. ; Choudhary, Ram J. ; Barve, Trupti S. ; Mathe, Vikas L. ; Phase, Deodatta M. ; Thiry, Damien ; Patil, Shankar I.</creatorcontrib><description>Understanding the electronic structure of photocatalysts is crucial for enhancing their efficiency. In this study, we have successfully synthesized novel monoclinic bismuth vanadate (Bi 7 VO 13 ) nanoparticles using the gas phase condensation technique, with an average particle size of 40 nm. To investigate the crystallographic structure of the as-synthesized nanoparticles, we conducted X-ray diffraction (XRD) experiments. Additionally, we employed advanced characterization techniques to provide a detailed analysis of the electronic structure of Bi 7 VO 13 nanoparticles. This study presents the first report on the electronic structure of Bi 7 VO 13 nanoparticles using the aforementioned spectroscopic methods. Remarkably, the investigation revealed that the valence band maximum (VB) and conduction band minimum (CB) are dominated by O 2p and V 3d states, respectively. Moreover, X-ray absorption spectroscopy (XAS) reveals splitting the V 3d conduction band state into a triplet d-manifold at the V L-edge and O K-edge. This splitting arises from the lattice distortion induced by lone pairs, which gives rise to a band gap of 2.28 eV. Under visible light irradiation, the Bi 7 VO 13 nanoparticles exhibit efficient visible light absorption, highlighting their potential for photocatalytic applications. Notably, our experiments demonstrated outstanding photodegradation properties of methylene blue, serving as a model effluent, further underscoring the photocatalytic progress of Bi 7 VO 13 nanoparticles. In conclusion, this research explains the functioning of Bi 7 VO 13 photocatalysts and opens the doors for utilizing their potential to generate a cleaner and brighter future.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11732-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectroscopy ; Bismuth ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conduction bands ; Crystal structure ; Crystallography ; Electromagnetic absorption ; Electronic structure ; Electrons ; Light irradiation ; Materials Science ; Methylene blue ; Nanoparticles ; Optical and Electronic Materials ; Photocatalysis ; Photocatalysts ; Photodegradation ; Splitting ; Synthesis ; Thermal plasmas ; Valence band ; Vapor phases ; X ray absorption</subject><ispartof>Journal of materials science. Materials in electronics, 2023-12, Vol.34 (36), p.2326, Article 2326</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d7bf3c5ecf71a0a5632d6b83a973222455b2ee64d22b87941e54b3c3c5bfce43</cites><orcidid>0000-0002-0543-1702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11732-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11732-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kekade, Shankar S.</creatorcontrib><creatorcontrib>Raut, Suyog A.</creatorcontrib><creatorcontrib>Choudhary, Ram J.</creatorcontrib><creatorcontrib>Barve, Trupti S.</creatorcontrib><creatorcontrib>Mathe, Vikas L.</creatorcontrib><creatorcontrib>Phase, Deodatta M.</creatorcontrib><creatorcontrib>Thiry, Damien</creatorcontrib><creatorcontrib>Patil, Shankar I.</creatorcontrib><title>Visible light-driven photocatalyst δ‑Bi7VO13 nanoparticles synthesized by thermal plasma</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Understanding the electronic structure of photocatalysts is crucial for enhancing their efficiency. In this study, we have successfully synthesized novel monoclinic bismuth vanadate (Bi 7 VO 13 ) nanoparticles using the gas phase condensation technique, with an average particle size of 40 nm. To investigate the crystallographic structure of the as-synthesized nanoparticles, we conducted X-ray diffraction (XRD) experiments. Additionally, we employed advanced characterization techniques to provide a detailed analysis of the electronic structure of Bi 7 VO 13 nanoparticles. This study presents the first report on the electronic structure of Bi 7 VO 13 nanoparticles using the aforementioned spectroscopic methods. Remarkably, the investigation revealed that the valence band maximum (VB) and conduction band minimum (CB) are dominated by O 2p and V 3d states, respectively. Moreover, X-ray absorption spectroscopy (XAS) reveals splitting the V 3d conduction band state into a triplet d-manifold at the V L-edge and O K-edge. This splitting arises from the lattice distortion induced by lone pairs, which gives rise to a band gap of 2.28 eV. Under visible light irradiation, the Bi 7 VO 13 nanoparticles exhibit efficient visible light absorption, highlighting their potential for photocatalytic applications. Notably, our experiments demonstrated outstanding photodegradation properties of methylene blue, serving as a model effluent, further underscoring the photocatalytic progress of Bi 7 VO 13 nanoparticles. In conclusion, this research explains the functioning of Bi 7 VO 13 photocatalysts and opens the doors for utilizing their potential to generate a cleaner and brighter future.</description><subject>Absorption spectroscopy</subject><subject>Bismuth</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Electromagnetic absorption</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photodegradation</subject><subject>Splitting</subject><subject>Synthesis</subject><subject>Thermal plasmas</subject><subject>Valence band</subject><subject>Vapor phases</subject><subject>X ray absorption</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOprrZGapxRsUuikiuAhJJtOmTGfGZCqMK1_Bd_E5fAifxNQK7lyds_i__3A-AE4JPicYy4tIcC44wpQhQiSjqNgDIyIkQzynj_tghAshEReUHoKjGFcY44yzfASeHnz0pnaw9otlj8rgX1wDu2Xbt1b3uh5iDz8_vt7er7x8mBEGG920nQ69t7WLMA5Nv3TRv7oSmgGmPax1Dbtax7U-BgeVrqM7-Z1jML-5nk_u0HR2ez-5nCJLJU43pamYFc5WkmisRcZomZmc6SI9QikXwlDnMl5SanJZcOIEN8wmxFTWcTYGZ7vaLrTPGxd7tWo3oUkXFS0wFQUhdJuiu5QNbYzBVaoLfq3DoAhWW4dq51Alh-rHoSoSxHZQTOFm4cJf9T_UNy8mdw0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kekade, Shankar S.</creator><creator>Raut, Suyog A.</creator><creator>Choudhary, Ram J.</creator><creator>Barve, Trupti S.</creator><creator>Mathe, Vikas L.</creator><creator>Phase, Deodatta M.</creator><creator>Thiry, Damien</creator><creator>Patil, Shankar I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0543-1702</orcidid></search><sort><creationdate>20231201</creationdate><title>Visible light-driven photocatalyst δ‑Bi7VO13 nanoparticles synthesized by thermal plasma</title><author>Kekade, Shankar S. ; Raut, Suyog A. ; Choudhary, Ram J. ; Barve, Trupti S. ; Mathe, Vikas L. ; Phase, Deodatta M. ; Thiry, Damien ; Patil, Shankar I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d7bf3c5ecf71a0a5632d6b83a973222455b2ee64d22b87941e54b3c3c5bfce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Bismuth</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Electromagnetic absorption</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photodegradation</topic><topic>Splitting</topic><topic>Synthesis</topic><topic>Thermal plasmas</topic><topic>Valence band</topic><topic>Vapor phases</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kekade, Shankar S.</creatorcontrib><creatorcontrib>Raut, Suyog A.</creatorcontrib><creatorcontrib>Choudhary, Ram J.</creatorcontrib><creatorcontrib>Barve, Trupti S.</creatorcontrib><creatorcontrib>Mathe, Vikas L.</creatorcontrib><creatorcontrib>Phase, Deodatta M.</creatorcontrib><creatorcontrib>Thiry, Damien</creatorcontrib><creatorcontrib>Patil, Shankar I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kekade, Shankar S.</au><au>Raut, Suyog A.</au><au>Choudhary, Ram J.</au><au>Barve, Trupti S.</au><au>Mathe, Vikas L.</au><au>Phase, Deodatta M.</au><au>Thiry, Damien</au><au>Patil, Shankar I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible light-driven photocatalyst δ‑Bi7VO13 nanoparticles synthesized by thermal plasma</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>36</issue><spage>2326</spage><pages>2326-</pages><artnum>2326</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Understanding the electronic structure of photocatalysts is crucial for enhancing their efficiency. In this study, we have successfully synthesized novel monoclinic bismuth vanadate (Bi 7 VO 13 ) nanoparticles using the gas phase condensation technique, with an average particle size of 40 nm. To investigate the crystallographic structure of the as-synthesized nanoparticles, we conducted X-ray diffraction (XRD) experiments. Additionally, we employed advanced characterization techniques to provide a detailed analysis of the electronic structure of Bi 7 VO 13 nanoparticles. This study presents the first report on the electronic structure of Bi 7 VO 13 nanoparticles using the aforementioned spectroscopic methods. Remarkably, the investigation revealed that the valence band maximum (VB) and conduction band minimum (CB) are dominated by O 2p and V 3d states, respectively. Moreover, X-ray absorption spectroscopy (XAS) reveals splitting the V 3d conduction band state into a triplet d-manifold at the V L-edge and O K-edge. This splitting arises from the lattice distortion induced by lone pairs, which gives rise to a band gap of 2.28 eV. Under visible light irradiation, the Bi 7 VO 13 nanoparticles exhibit efficient visible light absorption, highlighting their potential for photocatalytic applications. Notably, our experiments demonstrated outstanding photodegradation properties of methylene blue, serving as a model effluent, further underscoring the photocatalytic progress of Bi 7 VO 13 nanoparticles. In conclusion, this research explains the functioning of Bi 7 VO 13 photocatalysts and opens the doors for utilizing their potential to generate a cleaner and brighter future.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11732-9</doi><orcidid>https://orcid.org/0000-0002-0543-1702</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-12, Vol.34 (36), p.2326, Article 2326
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2902591124
source Springer Nature - Complete Springer Journals
subjects Absorption spectroscopy
Bismuth
Characterization and Evaluation of Materials
Chemistry and Materials Science
Conduction bands
Crystal structure
Crystallography
Electromagnetic absorption
Electronic structure
Electrons
Light irradiation
Materials Science
Methylene blue
Nanoparticles
Optical and Electronic Materials
Photocatalysis
Photocatalysts
Photodegradation
Splitting
Synthesis
Thermal plasmas
Valence band
Vapor phases
X ray absorption
title Visible light-driven photocatalyst δ‑Bi7VO13 nanoparticles synthesized by thermal plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible%20light-driven%20photocatalyst%20%CE%B4%E2%80%91Bi7VO13%20nanoparticles%20synthesized%20by%20thermal%20plasma&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kekade,%20Shankar%20S.&rft.date=2023-12-01&rft.volume=34&rft.issue=36&rft.spage=2326&rft.pages=2326-&rft.artnum=2326&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11732-9&rft_dat=%3Cproquest_cross%3E2902591124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902591124&rft_id=info:pmid/&rfr_iscdi=true