Resolution of the Miller-Popper paradox

A longstanding paradox was first reported by David Miller in 1975 and highlighted by Karl Popper in 1979. Miller showed that the ranking of predictions from two theories, in terms of closeness to observation, appears to be reversed when the problem is transformed into a different mathematical space....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthese (Dordrecht) 2023-12, Vol.203 (1), p.1, Article 1
1. Verfasser: Eyre, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Synthese (Dordrecht)
container_volume 203
creator Eyre, John
description A longstanding paradox was first reported by David Miller in 1975 and highlighted by Karl Popper in 1979. Miller showed that the ranking of predictions from two theories, in terms of closeness to observation, appears to be reversed when the problem is transformed into a different mathematical space. He concluded that “… no false theory can … be closer to the truth than is another theory”. This flies in the face of normal scientific practice and is thus paradoxical; it is named here the “Miller-Popper paradox”. This paper proposes a resolution of the paradox, through consideration of the inevitable errors and uncertainties in both observations and predictions. It is proved that, for linear transformations and Gaussian error distributions, the transformation between spaces creates no change in quantitative measures of “closeness-to-observation” when these measures are based in probability theory. The extension of this result to nonlinear transformations and to non-Gaussian error distributions is also discussed. These results demonstrate that concepts used in comparison of predictions with observations—concepts of “closeness”, “consistency”, “agreement”, “falsification”, etc.—all imply some knowledge of the uncertainty characteristics of both predictions and observations.
doi_str_mv 10.1007/s11229-023-04425-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2902580980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902580980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-28fb2954e03d2fbb60ea46f90f8bb41227df8f5c4cbb96193bf8a392c8e97aa93</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8FD56ikz9tkqMsugoriug5JG2iXWpTkxb02xutoCdPMwPvvXn8EDomcEYAxHkihFKFgTIMnNMSix20IKXIp6r47p99Hx2ktAUgpOKwQKcPLoVuGtvQF8EX44srbtuucxHfh2FwsRhMNE14P0R73nTJHf3MJXq6unxcXePN3fpmdbHBNRUwYiq9parkDlhDvbUVOMMrr8BLa3nuKBovfVnz2lpVEcWsl4YpWkunhDGKLdHJnDvE8Da5NOptmGKfX2qqgJYSlISsorOqjiGl6LweYvtq4ocmoL-A6BmIzkD0NxAtsonNppTF_bOLv9H_uD4B6JdiHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902580980</pqid></control><display><type>article</type><title>Resolution of the Miller-Popper paradox</title><source>SpringerLink Journals</source><creator>Eyre, John</creator><creatorcontrib>Eyre, John</creatorcontrib><description>A longstanding paradox was first reported by David Miller in 1975 and highlighted by Karl Popper in 1979. Miller showed that the ranking of predictions from two theories, in terms of closeness to observation, appears to be reversed when the problem is transformed into a different mathematical space. He concluded that “… no false theory can … be closer to the truth than is another theory”. This flies in the face of normal scientific practice and is thus paradoxical; it is named here the “Miller-Popper paradox”. This paper proposes a resolution of the paradox, through consideration of the inevitable errors and uncertainties in both observations and predictions. It is proved that, for linear transformations and Gaussian error distributions, the transformation between spaces creates no change in quantitative measures of “closeness-to-observation” when these measures are based in probability theory. The extension of this result to nonlinear transformations and to non-Gaussian error distributions is also discussed. These results demonstrate that concepts used in comparison of predictions with observations—concepts of “closeness”, “consistency”, “agreement”, “falsification”, etc.—all imply some knowledge of the uncertainty characteristics of both predictions and observations.</description><identifier>ISSN: 1573-0964</identifier><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1007/s11229-023-04425-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Education ; Epistemology ; Logic ; Mathematics ; Metaphysics ; Observational studies ; Original Research ; Philosophy ; Philosophy of Language ; Philosophy of Science ; Predictions ; Theory</subject><ispartof>Synthese (Dordrecht), 2023-12, Vol.203 (1), p.1, Article 1</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-28fb2954e03d2fbb60ea46f90f8bb41227df8f5c4cbb96193bf8a392c8e97aa93</cites><orcidid>0000-0002-9877-392X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11229-023-04425-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11229-023-04425-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eyre, John</creatorcontrib><title>Resolution of the Miller-Popper paradox</title><title>Synthese (Dordrecht)</title><addtitle>Synthese</addtitle><description>A longstanding paradox was first reported by David Miller in 1975 and highlighted by Karl Popper in 1979. Miller showed that the ranking of predictions from two theories, in terms of closeness to observation, appears to be reversed when the problem is transformed into a different mathematical space. He concluded that “… no false theory can … be closer to the truth than is another theory”. This flies in the face of normal scientific practice and is thus paradoxical; it is named here the “Miller-Popper paradox”. This paper proposes a resolution of the paradox, through consideration of the inevitable errors and uncertainties in both observations and predictions. It is proved that, for linear transformations and Gaussian error distributions, the transformation between spaces creates no change in quantitative measures of “closeness-to-observation” when these measures are based in probability theory. The extension of this result to nonlinear transformations and to non-Gaussian error distributions is also discussed. These results demonstrate that concepts used in comparison of predictions with observations—concepts of “closeness”, “consistency”, “agreement”, “falsification”, etc.—all imply some knowledge of the uncertainty characteristics of both predictions and observations.</description><subject>Education</subject><subject>Epistemology</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Metaphysics</subject><subject>Observational studies</subject><subject>Original Research</subject><subject>Philosophy</subject><subject>Philosophy of Language</subject><subject>Philosophy of Science</subject><subject>Predictions</subject><subject>Theory</subject><issn>1573-0964</issn><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>AVQMV</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8FD56ikz9tkqMsugoriug5JG2iXWpTkxb02xutoCdPMwPvvXn8EDomcEYAxHkihFKFgTIMnNMSix20IKXIp6r47p99Hx2ktAUgpOKwQKcPLoVuGtvQF8EX44srbtuucxHfh2FwsRhMNE14P0R73nTJHf3MJXq6unxcXePN3fpmdbHBNRUwYiq9parkDlhDvbUVOMMrr8BLa3nuKBovfVnz2lpVEcWsl4YpWkunhDGKLdHJnDvE8Da5NOptmGKfX2qqgJYSlISsorOqjiGl6LweYvtq4ocmoL-A6BmIzkD0NxAtsonNppTF_bOLv9H_uD4B6JdiHA</recordid><startdate>20231216</startdate><enddate>20231216</enddate><creator>Eyre, John</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9877-392X</orcidid></search><sort><creationdate>20231216</creationdate><title>Resolution of the Miller-Popper paradox</title><author>Eyre, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-28fb2954e03d2fbb60ea46f90f8bb41227df8f5c4cbb96193bf8a392c8e97aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Education</topic><topic>Epistemology</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Metaphysics</topic><topic>Observational studies</topic><topic>Original Research</topic><topic>Philosophy</topic><topic>Philosophy of Language</topic><topic>Philosophy of Science</topic><topic>Predictions</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyre, John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyre, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolution of the Miller-Popper paradox</atitle><jtitle>Synthese (Dordrecht)</jtitle><stitle>Synthese</stitle><date>2023-12-16</date><risdate>2023</risdate><volume>203</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>1</artnum><issn>1573-0964</issn><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>A longstanding paradox was first reported by David Miller in 1975 and highlighted by Karl Popper in 1979. Miller showed that the ranking of predictions from two theories, in terms of closeness to observation, appears to be reversed when the problem is transformed into a different mathematical space. He concluded that “… no false theory can … be closer to the truth than is another theory”. This flies in the face of normal scientific practice and is thus paradoxical; it is named here the “Miller-Popper paradox”. This paper proposes a resolution of the paradox, through consideration of the inevitable errors and uncertainties in both observations and predictions. It is proved that, for linear transformations and Gaussian error distributions, the transformation between spaces creates no change in quantitative measures of “closeness-to-observation” when these measures are based in probability theory. The extension of this result to nonlinear transformations and to non-Gaussian error distributions is also discussed. These results demonstrate that concepts used in comparison of predictions with observations—concepts of “closeness”, “consistency”, “agreement”, “falsification”, etc.—all imply some knowledge of the uncertainty characteristics of both predictions and observations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11229-023-04425-7</doi><orcidid>https://orcid.org/0000-0002-9877-392X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-0964
ispartof Synthese (Dordrecht), 2023-12, Vol.203 (1), p.1, Article 1
issn 1573-0964
0039-7857
1573-0964
language eng
recordid cdi_proquest_journals_2902580980
source SpringerLink Journals
subjects Education
Epistemology
Logic
Mathematics
Metaphysics
Observational studies
Original Research
Philosophy
Philosophy of Language
Philosophy of Science
Predictions
Theory
title Resolution of the Miller-Popper paradox
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolution%20of%20the%20Miller-Popper%20paradox&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Eyre,%20John&rft.date=2023-12-16&rft.volume=203&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=1&rft.issn=1573-0964&rft.eissn=1573-0964&rft_id=info:doi/10.1007/s11229-023-04425-7&rft_dat=%3Cproquest_cross%3E2902580980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902580980&rft_id=info:pmid/&rfr_iscdi=true