Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator
The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a u...
Gespeichert in:
Veröffentlicht in: | Differential equations 2023-12, Vol.59 (Suppl 1), p.1-72 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | Suppl 1 |
container_start_page | 1 |
container_title | Differential equations |
container_volume | 59 |
creator | Zaitseva, N. V. |
description | The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well. |
doi_str_mv | 10.1134/S00122661230130013 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2902508437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776466938</galeid><sourcerecordid>A776466938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-14034dee7a79e7ae420679dd6d141efe3aab4ca6b5ebd96db8dbfc39688569383</originalsourceid><addsrcrecordid>eNp9kFFLwzAQgIMoOKd_wKeAz51Jk6XN4xzTDSYT1AefStpct4yu2ZIM3b83swMfBAkkXO777o5D6JaSAaWM378SQtNUCJoyQlkM2BnqUUHyhJGcnaPeMZ8cgUt05f2aECIzOuyhj2fzBRq_OFs2sPH404QVnrUBlk41eGxbbYKxrce1dXh62IIrbWMqPNntVZf4McIK8AN4Dw1eREYF667RRa0aDzent4_eHydv42kyXzzNxqN5UjEiQ0I5YVwDZCqT8QKeEpFJrYWmnEINTKmSV0qUQyi1FLrMdVlXTIo8HwrJctZHd13drbO7PfhQrO3etbFlkUqSDknOWRapQUctVQOFaWsbnKri0bAxlW2hNvF_lGWCi1PZtBMqZ713UBdbZzbKHQpKiuPOi787jxLrJB_hdgnud5Z_rG-a54No</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902508437</pqid></control><display><type>article</type><title>Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator</title><source>Springer Nature - Complete Springer Journals</source><creator>Zaitseva, N. V.</creator><creatorcontrib>Zaitseva, N. V.</creatorcontrib><description>The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S00122661230130013</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bessel functions ; Difference and Functional Equations ; Differential equations ; Elliptic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Ordinary Differential Equations ; Partial Differential Equations ; Well posed problems</subject><ispartof>Differential equations, 2023-12, Vol.59 (Suppl 1), p.1-72</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-14034dee7a79e7ae420679dd6d141efe3aab4ca6b5ebd96db8dbfc39688569383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S00122661230130013$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S00122661230130013$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zaitseva, N. V.</creatorcontrib><title>Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well.</description><subject>Bessel functions</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Elliptic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Well posed problems</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQgIMoOKd_wKeAz51Jk6XN4xzTDSYT1AefStpct4yu2ZIM3b83swMfBAkkXO777o5D6JaSAaWM378SQtNUCJoyQlkM2BnqUUHyhJGcnaPeMZ8cgUt05f2aECIzOuyhj2fzBRq_OFs2sPH404QVnrUBlk41eGxbbYKxrce1dXh62IIrbWMqPNntVZf4McIK8AN4Dw1eREYF667RRa0aDzent4_eHydv42kyXzzNxqN5UjEiQ0I5YVwDZCqT8QKeEpFJrYWmnEINTKmSV0qUQyi1FLrMdVlXTIo8HwrJctZHd13drbO7PfhQrO3etbFlkUqSDknOWRapQUctVQOFaWsbnKri0bAxlW2hNvF_lGWCi1PZtBMqZ713UBdbZzbKHQpKiuPOi787jxLrJB_hdgnud5Z_rG-a54No</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zaitseva, N. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231201</creationdate><title>Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator</title><author>Zaitseva, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-14034dee7a79e7ae420679dd6d141efe3aab4ca6b5ebd96db8dbfc39688569383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bessel functions</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Elliptic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitseva, N. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitseva, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>Suppl 1</issue><spage>1</spage><epage>72</epage><pages>1-72</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S00122661230130013</doi><tpages>72</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2023-12, Vol.59 (Suppl 1), p.1-72 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_2902508437 |
source | Springer Nature - Complete Springer Journals |
subjects | Bessel functions Difference and Functional Equations Differential equations Elliptic functions Mathematical analysis Mathematics Mathematics and Statistics Operators (mathematics) Ordinary Differential Equations Partial Differential Equations Well posed problems |
title | Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Problems%20with%20Integral%20Conditions%20for%20Hyperbolic%20Equations%20with%20the%20Bessel%20Operator&rft.jtitle=Differential%20equations&rft.au=Zaitseva,%20N.%20V.&rft.date=2023-12-01&rft.volume=59&rft.issue=Suppl%201&rft.spage=1&rft.epage=72&rft.pages=1-72&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S00122661230130013&rft_dat=%3Cgale_proqu%3EA776466938%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902508437&rft_id=info:pmid/&rft_galeid=A776466938&rfr_iscdi=true |