Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator

The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2023-12, Vol.59 (Suppl 1), p.1-72
1. Verfasser: Zaitseva, N. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue Suppl 1
container_start_page 1
container_title Differential equations
container_volume 59
creator Zaitseva, N. V.
description The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well.
doi_str_mv 10.1134/S00122661230130013
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2902508437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776466938</galeid><sourcerecordid>A776466938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-14034dee7a79e7ae420679dd6d141efe3aab4ca6b5ebd96db8dbfc39688569383</originalsourceid><addsrcrecordid>eNp9kFFLwzAQgIMoOKd_wKeAz51Jk6XN4xzTDSYT1AefStpct4yu2ZIM3b83swMfBAkkXO777o5D6JaSAaWM378SQtNUCJoyQlkM2BnqUUHyhJGcnaPeMZ8cgUt05f2aECIzOuyhj2fzBRq_OFs2sPH404QVnrUBlk41eGxbbYKxrce1dXh62IIrbWMqPNntVZf4McIK8AN4Dw1eREYF667RRa0aDzent4_eHydv42kyXzzNxqN5UjEiQ0I5YVwDZCqT8QKeEpFJrYWmnEINTKmSV0qUQyi1FLrMdVlXTIo8HwrJctZHd13drbO7PfhQrO3etbFlkUqSDknOWRapQUctVQOFaWsbnKri0bAxlW2hNvF_lGWCi1PZtBMqZ713UBdbZzbKHQpKiuPOi787jxLrJB_hdgnud5Z_rG-a54No</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902508437</pqid></control><display><type>article</type><title>Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator</title><source>Springer Nature - Complete Springer Journals</source><creator>Zaitseva, N. V.</creator><creatorcontrib>Zaitseva, N. V.</creatorcontrib><description>The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S00122661230130013</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bessel functions ; Difference and Functional Equations ; Differential equations ; Elliptic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Ordinary Differential Equations ; Partial Differential Equations ; Well posed problems</subject><ispartof>Differential equations, 2023-12, Vol.59 (Suppl 1), p.1-72</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-14034dee7a79e7ae420679dd6d141efe3aab4ca6b5ebd96db8dbfc39688569383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S00122661230130013$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S00122661230130013$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zaitseva, N. V.</creatorcontrib><title>Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well.</description><subject>Bessel functions</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Elliptic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Well posed problems</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQgIMoOKd_wKeAz51Jk6XN4xzTDSYT1AefStpct4yu2ZIM3b83swMfBAkkXO777o5D6JaSAaWM378SQtNUCJoyQlkM2BnqUUHyhJGcnaPeMZ8cgUt05f2aECIzOuyhj2fzBRq_OFs2sPH404QVnrUBlk41eGxbbYKxrce1dXh62IIrbWMqPNntVZf4McIK8AN4Dw1eREYF667RRa0aDzent4_eHydv42kyXzzNxqN5UjEiQ0I5YVwDZCqT8QKeEpFJrYWmnEINTKmSV0qUQyi1FLrMdVlXTIo8HwrJctZHd13drbO7PfhQrO3etbFlkUqSDknOWRapQUctVQOFaWsbnKri0bAxlW2hNvF_lGWCi1PZtBMqZ713UBdbZzbKHQpKiuPOi787jxLrJB_hdgnud5Z_rG-a54No</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zaitseva, N. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231201</creationdate><title>Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator</title><author>Zaitseva, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-14034dee7a79e7ae420679dd6d141efe3aab4ca6b5ebd96db8dbfc39688569383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bessel functions</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Elliptic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitseva, N. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitseva, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>Suppl 1</issue><spage>1</spage><epage>72</epage><pages>1-72</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S00122661230130013</doi><tpages>72</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2023-12, Vol.59 (Suppl 1), p.1-72
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2902508437
source Springer Nature - Complete Springer Journals
subjects Bessel functions
Difference and Functional Equations
Differential equations
Elliptic functions
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
Ordinary Differential Equations
Partial Differential Equations
Well posed problems
title Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Problems%20with%20Integral%20Conditions%20for%20Hyperbolic%20Equations%20with%20the%20Bessel%20Operator&rft.jtitle=Differential%20equations&rft.au=Zaitseva,%20N.%20V.&rft.date=2023-12-01&rft.volume=59&rft.issue=Suppl%201&rft.spage=1&rft.epage=72&rft.pages=1-72&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S00122661230130013&rft_dat=%3Cgale_proqu%3EA776466938%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902508437&rft_id=info:pmid/&rft_galeid=A776466938&rfr_iscdi=true