Numerical Computation of Non-Equilateral Quantum Graph Spectra

In the broad range of studies related to quantum graphs, quantum graph spectra appear as a topic of special interest. They are important in the context of diffusion type problems posed on metric graphs. Theoretical findings suggest that quantum graph eigenvalues can be found as the solutions of a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Chong-Son Dröge, Weller, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chong-Son Dröge
Weller, Anna
description In the broad range of studies related to quantum graphs, quantum graph spectra appear as a topic of special interest. They are important in the context of diffusion type problems posed on metric graphs. Theoretical findings suggest that quantum graph eigenvalues can be found as the solutions of a nonlinear eigenvalue problem, and in the special case of equilateral graphs, even as the solutions of a linear eigenvalue problem on the underlying combinatorial graph. The latter, remarkable relation to combinatorial graph spectra will be exploited to derive a solver for the general, non-equilateral case. Eigenvalue estimates from equilateral approximations will be applied as initial guesses in a Newton-trace iteration to solve the nonlinear eigenvalue problem.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2902168628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902168628</sourcerecordid><originalsourceid>FETCH-proquest_journals_29021686283</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadB_Nbml26iNVJiLrLh0xSdJvbvv-fh35Ap_fwvBuWgFKZKE8AO5aGMEopoThDnquEXRuatR86nHhlZ0cR42ANtz1vrBH1QsOEUfuVn4Qm0szvHt2Hv5zuoscD2_Y4BZ3-umfHW_2uHsJ5u5AOsR0tebNSCxcJWVEWUKr_ri_GCThj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902168628</pqid></control><display><type>article</type><title>Numerical Computation of Non-Equilateral Quantum Graph Spectra</title><source>Free E- Journals</source><creator>Chong-Son Dröge ; Weller, Anna</creator><creatorcontrib>Chong-Son Dröge ; Weller, Anna</creatorcontrib><description>In the broad range of studies related to quantum graphs, quantum graph spectra appear as a topic of special interest. They are important in the context of diffusion type problems posed on metric graphs. Theoretical findings suggest that quantum graph eigenvalues can be found as the solutions of a nonlinear eigenvalue problem, and in the special case of equilateral graphs, even as the solutions of a linear eigenvalue problem on the underlying combinatorial graph. The latter, remarkable relation to combinatorial graph spectra will be exploited to derive a solver for the general, non-equilateral case. Eigenvalue estimates from equilateral approximations will be applied as initial guesses in a Newton-trace iteration to solve the nonlinear eigenvalue problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Eigenvalues ; Graphs ; Iterative methods ; Numerical analysis ; Spectra</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chong-Son Dröge</creatorcontrib><creatorcontrib>Weller, Anna</creatorcontrib><title>Numerical Computation of Non-Equilateral Quantum Graph Spectra</title><title>arXiv.org</title><description>In the broad range of studies related to quantum graphs, quantum graph spectra appear as a topic of special interest. They are important in the context of diffusion type problems posed on metric graphs. Theoretical findings suggest that quantum graph eigenvalues can be found as the solutions of a nonlinear eigenvalue problem, and in the special case of equilateral graphs, even as the solutions of a linear eigenvalue problem on the underlying combinatorial graph. The latter, remarkable relation to combinatorial graph spectra will be exploited to derive a solver for the general, non-equilateral case. Eigenvalue estimates from equilateral approximations will be applied as initial guesses in a Newton-trace iteration to solve the nonlinear eigenvalue problem.</description><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Iterative methods</subject><subject>Numerical analysis</subject><subject>Spectra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadB_Nbml26iNVJiLrLh0xSdJvbvv-fh35Ap_fwvBuWgFKZKE8AO5aGMEopoThDnquEXRuatR86nHhlZ0cR42ANtz1vrBH1QsOEUfuVn4Qm0szvHt2Hv5zuoscD2_Y4BZ3-umfHW_2uHsJ5u5AOsR0tebNSCxcJWVEWUKr_ri_GCThj</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Chong-Son Dröge</creator><creator>Weller, Anna</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231214</creationdate><title>Numerical Computation of Non-Equilateral Quantum Graph Spectra</title><author>Chong-Son Dröge ; Weller, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29021686283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Iterative methods</topic><topic>Numerical analysis</topic><topic>Spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Chong-Son Dröge</creatorcontrib><creatorcontrib>Weller, Anna</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chong-Son Dröge</au><au>Weller, Anna</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Numerical Computation of Non-Equilateral Quantum Graph Spectra</atitle><jtitle>arXiv.org</jtitle><date>2023-12-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In the broad range of studies related to quantum graphs, quantum graph spectra appear as a topic of special interest. They are important in the context of diffusion type problems posed on metric graphs. Theoretical findings suggest that quantum graph eigenvalues can be found as the solutions of a nonlinear eigenvalue problem, and in the special case of equilateral graphs, even as the solutions of a linear eigenvalue problem on the underlying combinatorial graph. The latter, remarkable relation to combinatorial graph spectra will be exploited to derive a solver for the general, non-equilateral case. Eigenvalue estimates from equilateral approximations will be applied as initial guesses in a Newton-trace iteration to solve the nonlinear eigenvalue problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2902168628
source Free E- Journals
subjects Combinatorial analysis
Eigenvalues
Graphs
Iterative methods
Numerical analysis
Spectra
title Numerical Computation of Non-Equilateral Quantum Graph Spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Numerical%20Computation%20of%20Non-Equilateral%20Quantum%20Graph%20Spectra&rft.jtitle=arXiv.org&rft.au=Chong-Son%20Dr%C3%B6ge&rft.date=2023-12-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2902168628%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902168628&rft_id=info:pmid/&rfr_iscdi=true