A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC
Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing...
Gespeichert in:
Veröffentlicht in: | Drug development research 2023-12, Vol.84 (8), p.1724-1738 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1738 |
---|---|
container_issue | 8 |
container_start_page | 1724 |
container_title | Drug development research |
container_volume | 84 |
creator | Suresh, Rajaghatta N. Jung, Young Y. Mohan, Chakrabhavi D. Gowda, Shalini V. Harsha, Kachigere B. Mantelingu, Kempegowda Sethi, Gautam Ahn, Kwang S. Rangappa, Kanchugarakoppal S. |
description | Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl‐indolo‐quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3‐difluoro‐6‐((1‐(3‐fluorophenyl)‐1H‐1,2,3‐triazol‐5‐yl)methyl)‐6H‐indolo[2,3‐b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin‐V‐fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699. DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI‐driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK‐STAT pathway. Knockdown of PTPεC suppressed the DTI‐induced STATs inhibition in GC cells. Taken together, triazolyl‐indolo‐quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells. |
doi_str_mv | 10.1002/ddr.22117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2902141519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902141519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2357-84710df1920fbe3078222c9adf62803553f7e581f706e30685fe0a2a6a3909633</originalsourceid><addsrcrecordid>eNp1kEtOwzAURS0EgvIZsAFkiRGDtP4kcTysWn4SEhWUceQmdhrkxqmdqIQRS4DFsA0WwUowtDBj9Kzr886TLgDHGPUxQmSQ57ZPCMZsC_Qw4klACOfboIcII0FIOd4D-849IoRxmCS7YI8yFsVhzHrgbQgruYKNLcWz0Z3-fHktq9xo4x_LtqzMk9BlJaEP20w6KGpTN8aVziewEM4vZjATVSYtzKTWDs46KGbWFKIpqwI2cwnvp8MpHUSwFs18JTqfWdMWc9jWVhat9qCpoFFwMp18vI8OwY4S2smjzTwADxfn09FVcHN7eT0a3gQZoRELkpBhlCvMCVIzSRFLCCEZF7mKSYJoFFHFZJRgxVDsv-MkUhIJImJBOeIxpQfgdO2trVm20jXpo2lt5U-mhCOCQxxh7qmzNZVZ45yVKq1tuRC2SzFKv8tPffnpT_mePdkY29lC5n_kb9seGKyBVall978pHY_v1sovEGiRWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902141519</pqid></control><display><type>article</type><title>A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Suresh, Rajaghatta N. ; Jung, Young Y. ; Mohan, Chakrabhavi D. ; Gowda, Shalini V. ; Harsha, Kachigere B. ; Mantelingu, Kempegowda ; Sethi, Gautam ; Ahn, Kwang S. ; Rangappa, Kanchugarakoppal S.</creator><creatorcontrib>Suresh, Rajaghatta N. ; Jung, Young Y. ; Mohan, Chakrabhavi D. ; Gowda, Shalini V. ; Harsha, Kachigere B. ; Mantelingu, Kempegowda ; Sethi, Gautam ; Ahn, Kwang S. ; Rangappa, Kanchugarakoppal S.</creatorcontrib><description>Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl‐indolo‐quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3‐difluoro‐6‐((1‐(3‐fluorophenyl)‐1H‐1,2,3‐triazol‐5‐yl)methyl)‐6H‐indolo[2,3‐b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin‐V‐fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699. DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI‐driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK‐STAT pathway. Knockdown of PTPεC suppressed the DTI‐induced STATs inhibition in GC cells. Taken together, triazolyl‐indolo‐quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells.</description><identifier>ISSN: 0272-4391</identifier><identifier>EISSN: 1098-2299</identifier><identifier>DOI: 10.1002/ddr.22117</identifier><identifier>PMID: 37756467</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Apoptosis ; Assaying ; Cancer ; Caspase ; Cytotoxicity ; DNA nucleotidylexotransferase ; DNA-Binding Proteins - metabolism ; Electrophoretic mobility ; Flow cytometry ; Fluorescein isothiocyanate ; Gastric cancer ; Gene expression ; Humans ; Hybrids ; Immunofluorescence ; Janus kinase ; Janus kinase 2 ; Janus Kinases - metabolism ; Janus Kinases - pharmacology ; Kinases ; nonreceptor tyrosine kinase ; Pervanadate ; Phosphorylation ; Protein-tyrosine-phosphatase ; Proteins ; proteins tyrosine phosphatase ; Quinoxaline ; Quinoxalines ; Quinoxalines - pharmacology ; Signal Transduction ; STAT Transcription Factors - metabolism ; STAT Transcription Factors - pharmacology ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; Stat5 protein ; STAT5 Transcription Factor - metabolism ; STAT5 Transcription Factor - pharmacology ; Stomach Neoplasms ; Synthesis ; Toxicity ; Trans-Activators ; Transcription factors ; Tyrosine ; Up-Regulation</subject><ispartof>Drug development research, 2023-12, Vol.84 (8), p.1724-1738</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2357-84710df1920fbe3078222c9adf62803553f7e581f706e30685fe0a2a6a3909633</citedby><cites>FETCH-LOGICAL-c2357-84710df1920fbe3078222c9adf62803553f7e581f706e30685fe0a2a6a3909633</cites><orcidid>0000-0002-8677-8475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fddr.22117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fddr.22117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37756467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suresh, Rajaghatta N.</creatorcontrib><creatorcontrib>Jung, Young Y.</creatorcontrib><creatorcontrib>Mohan, Chakrabhavi D.</creatorcontrib><creatorcontrib>Gowda, Shalini V.</creatorcontrib><creatorcontrib>Harsha, Kachigere B.</creatorcontrib><creatorcontrib>Mantelingu, Kempegowda</creatorcontrib><creatorcontrib>Sethi, Gautam</creatorcontrib><creatorcontrib>Ahn, Kwang S.</creatorcontrib><creatorcontrib>Rangappa, Kanchugarakoppal S.</creatorcontrib><title>A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC</title><title>Drug development research</title><addtitle>Drug Dev Res</addtitle><description>Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl‐indolo‐quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3‐difluoro‐6‐((1‐(3‐fluorophenyl)‐1H‐1,2,3‐triazol‐5‐yl)methyl)‐6H‐indolo[2,3‐b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin‐V‐fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699. DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI‐driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK‐STAT pathway. Knockdown of PTPεC suppressed the DTI‐induced STATs inhibition in GC cells. Taken together, triazolyl‐indolo‐quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells.</description><subject>Apoptosis</subject><subject>Assaying</subject><subject>Cancer</subject><subject>Caspase</subject><subject>Cytotoxicity</subject><subject>DNA nucleotidylexotransferase</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic mobility</subject><subject>Flow cytometry</subject><subject>Fluorescein isothiocyanate</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hybrids</subject><subject>Immunofluorescence</subject><subject>Janus kinase</subject><subject>Janus kinase 2</subject><subject>Janus Kinases - metabolism</subject><subject>Janus Kinases - pharmacology</subject><subject>Kinases</subject><subject>nonreceptor tyrosine kinase</subject><subject>Pervanadate</subject><subject>Phosphorylation</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Proteins</subject><subject>proteins tyrosine phosphatase</subject><subject>Quinoxaline</subject><subject>Quinoxalines</subject><subject>Quinoxalines - pharmacology</subject><subject>Signal Transduction</subject><subject>STAT Transcription Factors - metabolism</subject><subject>STAT Transcription Factors - pharmacology</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Stat5 protein</subject><subject>STAT5 Transcription Factor - metabolism</subject><subject>STAT5 Transcription Factor - pharmacology</subject><subject>Stomach Neoplasms</subject><subject>Synthesis</subject><subject>Toxicity</subject><subject>Trans-Activators</subject><subject>Transcription factors</subject><subject>Tyrosine</subject><subject>Up-Regulation</subject><issn>0272-4391</issn><issn>1098-2299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtOwzAURS0EgvIZsAFkiRGDtP4kcTysWn4SEhWUceQmdhrkxqmdqIQRS4DFsA0WwUowtDBj9Kzr886TLgDHGPUxQmSQ57ZPCMZsC_Qw4klACOfboIcII0FIOd4D-849IoRxmCS7YI8yFsVhzHrgbQgruYKNLcWz0Z3-fHktq9xo4x_LtqzMk9BlJaEP20w6KGpTN8aVziewEM4vZjATVSYtzKTWDs46KGbWFKIpqwI2cwnvp8MpHUSwFs18JTqfWdMWc9jWVhat9qCpoFFwMp18vI8OwY4S2smjzTwADxfn09FVcHN7eT0a3gQZoRELkpBhlCvMCVIzSRFLCCEZF7mKSYJoFFHFZJRgxVDsv-MkUhIJImJBOeIxpQfgdO2trVm20jXpo2lt5U-mhCOCQxxh7qmzNZVZ45yVKq1tuRC2SzFKv8tPffnpT_mePdkY29lC5n_kb9seGKyBVall978pHY_v1sovEGiRWg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Suresh, Rajaghatta N.</creator><creator>Jung, Young Y.</creator><creator>Mohan, Chakrabhavi D.</creator><creator>Gowda, Shalini V.</creator><creator>Harsha, Kachigere B.</creator><creator>Mantelingu, Kempegowda</creator><creator>Sethi, Gautam</creator><creator>Ahn, Kwang S.</creator><creator>Rangappa, Kanchugarakoppal S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-8677-8475</orcidid></search><sort><creationdate>202312</creationdate><title>A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC</title><author>Suresh, Rajaghatta N. ; Jung, Young Y. ; Mohan, Chakrabhavi D. ; Gowda, Shalini V. ; Harsha, Kachigere B. ; Mantelingu, Kempegowda ; Sethi, Gautam ; Ahn, Kwang S. ; Rangappa, Kanchugarakoppal S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2357-84710df1920fbe3078222c9adf62803553f7e581f706e30685fe0a2a6a3909633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apoptosis</topic><topic>Assaying</topic><topic>Cancer</topic><topic>Caspase</topic><topic>Cytotoxicity</topic><topic>DNA nucleotidylexotransferase</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic mobility</topic><topic>Flow cytometry</topic><topic>Fluorescein isothiocyanate</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hybrids</topic><topic>Immunofluorescence</topic><topic>Janus kinase</topic><topic>Janus kinase 2</topic><topic>Janus Kinases - metabolism</topic><topic>Janus Kinases - pharmacology</topic><topic>Kinases</topic><topic>nonreceptor tyrosine kinase</topic><topic>Pervanadate</topic><topic>Phosphorylation</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Proteins</topic><topic>proteins tyrosine phosphatase</topic><topic>Quinoxaline</topic><topic>Quinoxalines</topic><topic>Quinoxalines - pharmacology</topic><topic>Signal Transduction</topic><topic>STAT Transcription Factors - metabolism</topic><topic>STAT Transcription Factors - pharmacology</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Stat5 protein</topic><topic>STAT5 Transcription Factor - metabolism</topic><topic>STAT5 Transcription Factor - pharmacology</topic><topic>Stomach Neoplasms</topic><topic>Synthesis</topic><topic>Toxicity</topic><topic>Trans-Activators</topic><topic>Transcription factors</topic><topic>Tyrosine</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh, Rajaghatta N.</creatorcontrib><creatorcontrib>Jung, Young Y.</creatorcontrib><creatorcontrib>Mohan, Chakrabhavi D.</creatorcontrib><creatorcontrib>Gowda, Shalini V.</creatorcontrib><creatorcontrib>Harsha, Kachigere B.</creatorcontrib><creatorcontrib>Mantelingu, Kempegowda</creatorcontrib><creatorcontrib>Sethi, Gautam</creatorcontrib><creatorcontrib>Ahn, Kwang S.</creatorcontrib><creatorcontrib>Rangappa, Kanchugarakoppal S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Drug development research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh, Rajaghatta N.</au><au>Jung, Young Y.</au><au>Mohan, Chakrabhavi D.</au><au>Gowda, Shalini V.</au><au>Harsha, Kachigere B.</au><au>Mantelingu, Kempegowda</au><au>Sethi, Gautam</au><au>Ahn, Kwang S.</au><au>Rangappa, Kanchugarakoppal S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC</atitle><jtitle>Drug development research</jtitle><addtitle>Drug Dev Res</addtitle><date>2023-12</date><risdate>2023</risdate><volume>84</volume><issue>8</issue><spage>1724</spage><epage>1738</epage><pages>1724-1738</pages><issn>0272-4391</issn><eissn>1098-2299</eissn><abstract>Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl‐indolo‐quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3‐difluoro‐6‐((1‐(3‐fluorophenyl)‐1H‐1,2,3‐triazol‐5‐yl)methyl)‐6H‐indolo[2,3‐b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin‐V‐fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699. DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI‐driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK‐STAT pathway. Knockdown of PTPεC suppressed the DTI‐induced STATs inhibition in GC cells. Taken together, triazolyl‐indolo‐quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37756467</pmid><doi>10.1002/ddr.22117</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8677-8475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4391 |
ispartof | Drug development research, 2023-12, Vol.84 (8), p.1724-1738 |
issn | 0272-4391 1098-2299 |
language | eng |
recordid | cdi_proquest_journals_2902141519 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Apoptosis Assaying Cancer Caspase Cytotoxicity DNA nucleotidylexotransferase DNA-Binding Proteins - metabolism Electrophoretic mobility Flow cytometry Fluorescein isothiocyanate Gastric cancer Gene expression Humans Hybrids Immunofluorescence Janus kinase Janus kinase 2 Janus Kinases - metabolism Janus Kinases - pharmacology Kinases nonreceptor tyrosine kinase Pervanadate Phosphorylation Protein-tyrosine-phosphatase Proteins proteins tyrosine phosphatase Quinoxaline Quinoxalines Quinoxalines - pharmacology Signal Transduction STAT Transcription Factors - metabolism STAT Transcription Factors - pharmacology Stat3 protein STAT3 Transcription Factor - metabolism Stat5 protein STAT5 Transcription Factor - metabolism STAT5 Transcription Factor - pharmacology Stomach Neoplasms Synthesis Toxicity Trans-Activators Transcription factors Tyrosine Up-Regulation |
title | A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20triazolyl%E2%80%90indolo%E2%80%90quinoxaline%20induces%20apoptosis%20in%20gastric%20cancer%20cells%20by%20abrogating%20the%20STAT3/5%20pathway%20through%20upregulation%20of%20PTP%CE%B5C&rft.jtitle=Drug%20development%20research&rft.au=Suresh,%20Rajaghatta%20N.&rft.date=2023-12&rft.volume=84&rft.issue=8&rft.spage=1724&rft.epage=1738&rft.pages=1724-1738&rft.issn=0272-4391&rft.eissn=1098-2299&rft_id=info:doi/10.1002/ddr.22117&rft_dat=%3Cproquest_cross%3E2902141519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902141519&rft_id=info:pmid/37756467&rfr_iscdi=true |