A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC

Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development research 2023-12, Vol.84 (8), p.1724-1738
Hauptverfasser: Suresh, Rajaghatta N., Jung, Young Y., Mohan, Chakrabhavi D., Gowda, Shalini V., Harsha, Kachigere B., Mantelingu, Kempegowda, Sethi, Gautam, Ahn, Kwang S., Rangappa, Kanchugarakoppal S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1738
container_issue 8
container_start_page 1724
container_title Drug development research
container_volume 84
creator Suresh, Rajaghatta N.
Jung, Young Y.
Mohan, Chakrabhavi D.
Gowda, Shalini V.
Harsha, Kachigere B.
Mantelingu, Kempegowda
Sethi, Gautam
Ahn, Kwang S.
Rangappa, Kanchugarakoppal S.
description Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl‐indolo‐quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3‐difluoro‐6‐((1‐(3‐fluorophenyl)‐1H‐1,2,3‐triazol‐5‐yl)methyl)‐6H‐indolo[2,3‐b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin‐V‐fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699. DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI‐driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK‐STAT pathway. Knockdown of PTPεC suppressed the DTI‐induced STATs inhibition in GC cells. Taken together, triazolyl‐indolo‐quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells.
doi_str_mv 10.1002/ddr.22117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2902141519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902141519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2357-84710df1920fbe3078222c9adf62803553f7e581f706e30685fe0a2a6a3909633</originalsourceid><addsrcrecordid>eNp1kEtOwzAURS0EgvIZsAFkiRGDtP4kcTysWn4SEhWUceQmdhrkxqmdqIQRS4DFsA0WwUowtDBj9Kzr886TLgDHGPUxQmSQ57ZPCMZsC_Qw4klACOfboIcII0FIOd4D-849IoRxmCS7YI8yFsVhzHrgbQgruYKNLcWz0Z3-fHktq9xo4x_LtqzMk9BlJaEP20w6KGpTN8aVziewEM4vZjATVSYtzKTWDs46KGbWFKIpqwI2cwnvp8MpHUSwFs18JTqfWdMWc9jWVhat9qCpoFFwMp18vI8OwY4S2smjzTwADxfn09FVcHN7eT0a3gQZoRELkpBhlCvMCVIzSRFLCCEZF7mKSYJoFFHFZJRgxVDsv-MkUhIJImJBOeIxpQfgdO2trVm20jXpo2lt5U-mhCOCQxxh7qmzNZVZ45yVKq1tuRC2SzFKv8tPffnpT_mePdkY29lC5n_kb9seGKyBVall978pHY_v1sovEGiRWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902141519</pqid></control><display><type>article</type><title>A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Suresh, Rajaghatta N. ; Jung, Young Y. ; Mohan, Chakrabhavi D. ; Gowda, Shalini V. ; Harsha, Kachigere B. ; Mantelingu, Kempegowda ; Sethi, Gautam ; Ahn, Kwang S. ; Rangappa, Kanchugarakoppal S.</creator><creatorcontrib>Suresh, Rajaghatta N. ; Jung, Young Y. ; Mohan, Chakrabhavi D. ; Gowda, Shalini V. ; Harsha, Kachigere B. ; Mantelingu, Kempegowda ; Sethi, Gautam ; Ahn, Kwang S. ; Rangappa, Kanchugarakoppal S.</creatorcontrib><description>Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl‐indolo‐quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3‐difluoro‐6‐((1‐(3‐fluorophenyl)‐1H‐1,2,3‐triazol‐5‐yl)methyl)‐6H‐indolo[2,3‐b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin‐V‐fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699. DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI‐driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK‐STAT pathway. Knockdown of PTPεC suppressed the DTI‐induced STATs inhibition in GC cells. Taken together, triazolyl‐indolo‐quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells.</description><identifier>ISSN: 0272-4391</identifier><identifier>EISSN: 1098-2299</identifier><identifier>DOI: 10.1002/ddr.22117</identifier><identifier>PMID: 37756467</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Apoptosis ; Assaying ; Cancer ; Caspase ; Cytotoxicity ; DNA nucleotidylexotransferase ; DNA-Binding Proteins - metabolism ; Electrophoretic mobility ; Flow cytometry ; Fluorescein isothiocyanate ; Gastric cancer ; Gene expression ; Humans ; Hybrids ; Immunofluorescence ; Janus kinase ; Janus kinase 2 ; Janus Kinases - metabolism ; Janus Kinases - pharmacology ; Kinases ; nonreceptor tyrosine kinase ; Pervanadate ; Phosphorylation ; Protein-tyrosine-phosphatase ; Proteins ; proteins tyrosine phosphatase ; Quinoxaline ; Quinoxalines ; Quinoxalines - pharmacology ; Signal Transduction ; STAT Transcription Factors - metabolism ; STAT Transcription Factors - pharmacology ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; Stat5 protein ; STAT5 Transcription Factor - metabolism ; STAT5 Transcription Factor - pharmacology ; Stomach Neoplasms ; Synthesis ; Toxicity ; Trans-Activators ; Transcription factors ; Tyrosine ; Up-Regulation</subject><ispartof>Drug development research, 2023-12, Vol.84 (8), p.1724-1738</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2357-84710df1920fbe3078222c9adf62803553f7e581f706e30685fe0a2a6a3909633</citedby><cites>FETCH-LOGICAL-c2357-84710df1920fbe3078222c9adf62803553f7e581f706e30685fe0a2a6a3909633</cites><orcidid>0000-0002-8677-8475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fddr.22117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fddr.22117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37756467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suresh, Rajaghatta N.</creatorcontrib><creatorcontrib>Jung, Young Y.</creatorcontrib><creatorcontrib>Mohan, Chakrabhavi D.</creatorcontrib><creatorcontrib>Gowda, Shalini V.</creatorcontrib><creatorcontrib>Harsha, Kachigere B.</creatorcontrib><creatorcontrib>Mantelingu, Kempegowda</creatorcontrib><creatorcontrib>Sethi, Gautam</creatorcontrib><creatorcontrib>Ahn, Kwang S.</creatorcontrib><creatorcontrib>Rangappa, Kanchugarakoppal S.</creatorcontrib><title>A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC</title><title>Drug development research</title><addtitle>Drug Dev Res</addtitle><description>Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl‐indolo‐quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3‐difluoro‐6‐((1‐(3‐fluorophenyl)‐1H‐1,2,3‐triazol‐5‐yl)methyl)‐6H‐indolo[2,3‐b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin‐V‐fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699. DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI‐driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK‐STAT pathway. Knockdown of PTPεC suppressed the DTI‐induced STATs inhibition in GC cells. Taken together, triazolyl‐indolo‐quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells.</description><subject>Apoptosis</subject><subject>Assaying</subject><subject>Cancer</subject><subject>Caspase</subject><subject>Cytotoxicity</subject><subject>DNA nucleotidylexotransferase</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic mobility</subject><subject>Flow cytometry</subject><subject>Fluorescein isothiocyanate</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hybrids</subject><subject>Immunofluorescence</subject><subject>Janus kinase</subject><subject>Janus kinase 2</subject><subject>Janus Kinases - metabolism</subject><subject>Janus Kinases - pharmacology</subject><subject>Kinases</subject><subject>nonreceptor tyrosine kinase</subject><subject>Pervanadate</subject><subject>Phosphorylation</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Proteins</subject><subject>proteins tyrosine phosphatase</subject><subject>Quinoxaline</subject><subject>Quinoxalines</subject><subject>Quinoxalines - pharmacology</subject><subject>Signal Transduction</subject><subject>STAT Transcription Factors - metabolism</subject><subject>STAT Transcription Factors - pharmacology</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Stat5 protein</subject><subject>STAT5 Transcription Factor - metabolism</subject><subject>STAT5 Transcription Factor - pharmacology</subject><subject>Stomach Neoplasms</subject><subject>Synthesis</subject><subject>Toxicity</subject><subject>Trans-Activators</subject><subject>Transcription factors</subject><subject>Tyrosine</subject><subject>Up-Regulation</subject><issn>0272-4391</issn><issn>1098-2299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtOwzAURS0EgvIZsAFkiRGDtP4kcTysWn4SEhWUceQmdhrkxqmdqIQRS4DFsA0WwUowtDBj9Kzr886TLgDHGPUxQmSQ57ZPCMZsC_Qw4klACOfboIcII0FIOd4D-849IoRxmCS7YI8yFsVhzHrgbQgruYKNLcWz0Z3-fHktq9xo4x_LtqzMk9BlJaEP20w6KGpTN8aVziewEM4vZjATVSYtzKTWDs46KGbWFKIpqwI2cwnvp8MpHUSwFs18JTqfWdMWc9jWVhat9qCpoFFwMp18vI8OwY4S2smjzTwADxfn09FVcHN7eT0a3gQZoRELkpBhlCvMCVIzSRFLCCEZF7mKSYJoFFHFZJRgxVDsv-MkUhIJImJBOeIxpQfgdO2trVm20jXpo2lt5U-mhCOCQxxh7qmzNZVZ45yVKq1tuRC2SzFKv8tPffnpT_mePdkY29lC5n_kb9seGKyBVall978pHY_v1sovEGiRWg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Suresh, Rajaghatta N.</creator><creator>Jung, Young Y.</creator><creator>Mohan, Chakrabhavi D.</creator><creator>Gowda, Shalini V.</creator><creator>Harsha, Kachigere B.</creator><creator>Mantelingu, Kempegowda</creator><creator>Sethi, Gautam</creator><creator>Ahn, Kwang S.</creator><creator>Rangappa, Kanchugarakoppal S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-8677-8475</orcidid></search><sort><creationdate>202312</creationdate><title>A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC</title><author>Suresh, Rajaghatta N. ; Jung, Young Y. ; Mohan, Chakrabhavi D. ; Gowda, Shalini V. ; Harsha, Kachigere B. ; Mantelingu, Kempegowda ; Sethi, Gautam ; Ahn, Kwang S. ; Rangappa, Kanchugarakoppal S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2357-84710df1920fbe3078222c9adf62803553f7e581f706e30685fe0a2a6a3909633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apoptosis</topic><topic>Assaying</topic><topic>Cancer</topic><topic>Caspase</topic><topic>Cytotoxicity</topic><topic>DNA nucleotidylexotransferase</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic mobility</topic><topic>Flow cytometry</topic><topic>Fluorescein isothiocyanate</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hybrids</topic><topic>Immunofluorescence</topic><topic>Janus kinase</topic><topic>Janus kinase 2</topic><topic>Janus Kinases - metabolism</topic><topic>Janus Kinases - pharmacology</topic><topic>Kinases</topic><topic>nonreceptor tyrosine kinase</topic><topic>Pervanadate</topic><topic>Phosphorylation</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Proteins</topic><topic>proteins tyrosine phosphatase</topic><topic>Quinoxaline</topic><topic>Quinoxalines</topic><topic>Quinoxalines - pharmacology</topic><topic>Signal Transduction</topic><topic>STAT Transcription Factors - metabolism</topic><topic>STAT Transcription Factors - pharmacology</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Stat5 protein</topic><topic>STAT5 Transcription Factor - metabolism</topic><topic>STAT5 Transcription Factor - pharmacology</topic><topic>Stomach Neoplasms</topic><topic>Synthesis</topic><topic>Toxicity</topic><topic>Trans-Activators</topic><topic>Transcription factors</topic><topic>Tyrosine</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh, Rajaghatta N.</creatorcontrib><creatorcontrib>Jung, Young Y.</creatorcontrib><creatorcontrib>Mohan, Chakrabhavi D.</creatorcontrib><creatorcontrib>Gowda, Shalini V.</creatorcontrib><creatorcontrib>Harsha, Kachigere B.</creatorcontrib><creatorcontrib>Mantelingu, Kempegowda</creatorcontrib><creatorcontrib>Sethi, Gautam</creatorcontrib><creatorcontrib>Ahn, Kwang S.</creatorcontrib><creatorcontrib>Rangappa, Kanchugarakoppal S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Drug development research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh, Rajaghatta N.</au><au>Jung, Young Y.</au><au>Mohan, Chakrabhavi D.</au><au>Gowda, Shalini V.</au><au>Harsha, Kachigere B.</au><au>Mantelingu, Kempegowda</au><au>Sethi, Gautam</au><au>Ahn, Kwang S.</au><au>Rangappa, Kanchugarakoppal S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC</atitle><jtitle>Drug development research</jtitle><addtitle>Drug Dev Res</addtitle><date>2023-12</date><risdate>2023</risdate><volume>84</volume><issue>8</issue><spage>1724</spage><epage>1738</epage><pages>1724-1738</pages><issn>0272-4391</issn><eissn>1098-2299</eissn><abstract>Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5‐mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl‐indolo‐quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3‐difluoro‐6‐((1‐(3‐fluorophenyl)‐1H‐1,2,3‐triazol‐5‐yl)methyl)‐6H‐indolo[2,3‐b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin‐V‐fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699. DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI‐driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK‐STAT pathway. Knockdown of PTPεC suppressed the DTI‐induced STATs inhibition in GC cells. Taken together, triazolyl‐indolo‐quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37756467</pmid><doi>10.1002/ddr.22117</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8677-8475</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-4391
ispartof Drug development research, 2023-12, Vol.84 (8), p.1724-1738
issn 0272-4391
1098-2299
language eng
recordid cdi_proquest_journals_2902141519
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Apoptosis
Assaying
Cancer
Caspase
Cytotoxicity
DNA nucleotidylexotransferase
DNA-Binding Proteins - metabolism
Electrophoretic mobility
Flow cytometry
Fluorescein isothiocyanate
Gastric cancer
Gene expression
Humans
Hybrids
Immunofluorescence
Janus kinase
Janus kinase 2
Janus Kinases - metabolism
Janus Kinases - pharmacology
Kinases
nonreceptor tyrosine kinase
Pervanadate
Phosphorylation
Protein-tyrosine-phosphatase
Proteins
proteins tyrosine phosphatase
Quinoxaline
Quinoxalines
Quinoxalines - pharmacology
Signal Transduction
STAT Transcription Factors - metabolism
STAT Transcription Factors - pharmacology
Stat3 protein
STAT3 Transcription Factor - metabolism
Stat5 protein
STAT5 Transcription Factor - metabolism
STAT5 Transcription Factor - pharmacology
Stomach Neoplasms
Synthesis
Toxicity
Trans-Activators
Transcription factors
Tyrosine
Up-Regulation
title A new triazolyl‐indolo‐quinoxaline induces apoptosis in gastric cancer cells by abrogating the STAT3/5 pathway through upregulation of PTPεC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20triazolyl%E2%80%90indolo%E2%80%90quinoxaline%20induces%20apoptosis%20in%20gastric%20cancer%20cells%20by%20abrogating%20the%20STAT3/5%20pathway%20through%20upregulation%20of%20PTP%CE%B5C&rft.jtitle=Drug%20development%20research&rft.au=Suresh,%20Rajaghatta%20N.&rft.date=2023-12&rft.volume=84&rft.issue=8&rft.spage=1724&rft.epage=1738&rft.pages=1724-1738&rft.issn=0272-4391&rft.eissn=1098-2299&rft_id=info:doi/10.1002/ddr.22117&rft_dat=%3Cproquest_cross%3E2902141519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902141519&rft_id=info:pmid/37756467&rfr_iscdi=true