Frames extracted from video streaming to recognition of face: LBPH, FF and CNN
There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this projec...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2901 |
creator | Shankar, R. Shiva Raminaidu, Ch Rajanikanth, J. Raghaveni, J. |
description | There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this project is to detect a human face and identify the person from the set of images from the database when the camera is streaming. A database is created by capturing frames by the camera. The LBPH algorithm, Fisher Face algorithms are used for Face Detection, Feature Extraction and Face Recognition. A Convolutional Neural Network with different layers is constructed, and the model is compiled. The result shows recognized faces when camera is streaming. |
doi_str_mv | 10.1063/5.0178700 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2902133661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902133661</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-50e19f9ea8e7988a72a08d612b6cf5615cbe2872dc6436ba7e45b4200a5fd5773</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKsL3yDgTpz6JZn8jDstjhVKdaHgLmQySZniTGqSFn17W9rV3RzuuVyErglMCAh2zydApJIAJ2hEOCeFFEScohFAVRa0ZF_n6CKlFQCtpFQjtKij6V3C7jdHY7NrsY-hx9uudQGnHJ3pu2GJc8DR2bAcutyFAQePvbHuAc-f3md3uK6xGVo8XSwu0Zk338ldHXOMPuvnj-msmL-9vE4f58WaMJYLDo5UvnJGOVkpZSQ1oFpBaCOs54Jw2ziqJG2tKJlojHQlb0oKYLhvuZRsjG4OvesYfjYuZb0KmzjslJpWQHcSIciOuj1QyXbZ7Jfrdex6E_80Ab3_S3N9_Iv9AwNRWlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2902133661</pqid></control><display><type>conference_proceeding</type><title>Frames extracted from video streaming to recognition of face: LBPH, FF and CNN</title><source>AIP Journals Complete</source><creator>Shankar, R. Shiva ; Raminaidu, Ch ; Rajanikanth, J. ; Raghaveni, J.</creator><contributor>P, Thangaraj ; H, Shankar ; K, Mohana Sundaram</contributor><creatorcontrib>Shankar, R. Shiva ; Raminaidu, Ch ; Rajanikanth, J. ; Raghaveni, J. ; P, Thangaraj ; H, Shankar ; K, Mohana Sundaram</creatorcontrib><description>There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this project is to detect a human face and identify the person from the set of images from the database when the camera is streaming. A database is created by capturing frames by the camera. The LBPH algorithm, Fisher Face algorithms are used for Face Detection, Feature Extraction and Face Recognition. A Convolutional Neural Network with different layers is constructed, and the model is compiled. The result shows recognized faces when camera is streaming.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0178700</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Biometric recognition systems ; Cameras ; Face recognition ; Feature extraction ; Frames (data processing) ; Image processing ; Video transmission</subject><ispartof>AIP conference proceedings, 2023, Vol.2901 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0178700$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>P, Thangaraj</contributor><contributor>H, Shankar</contributor><contributor>K, Mohana Sundaram</contributor><creatorcontrib>Shankar, R. Shiva</creatorcontrib><creatorcontrib>Raminaidu, Ch</creatorcontrib><creatorcontrib>Rajanikanth, J.</creatorcontrib><creatorcontrib>Raghaveni, J.</creatorcontrib><title>Frames extracted from video streaming to recognition of face: LBPH, FF and CNN</title><title>AIP conference proceedings</title><description>There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this project is to detect a human face and identify the person from the set of images from the database when the camera is streaming. A database is created by capturing frames by the camera. The LBPH algorithm, Fisher Face algorithms are used for Face Detection, Feature Extraction and Face Recognition. A Convolutional Neural Network with different layers is constructed, and the model is compiled. The result shows recognized faces when camera is streaming.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biometric recognition systems</subject><subject>Cameras</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Frames (data processing)</subject><subject>Image processing</subject><subject>Video transmission</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1KAzEYRYMoWKsL3yDgTpz6JZn8jDstjhVKdaHgLmQySZniTGqSFn17W9rV3RzuuVyErglMCAh2zydApJIAJ2hEOCeFFEScohFAVRa0ZF_n6CKlFQCtpFQjtKij6V3C7jdHY7NrsY-hx9uudQGnHJ3pu2GJc8DR2bAcutyFAQePvbHuAc-f3md3uK6xGVo8XSwu0Zk338ldHXOMPuvnj-msmL-9vE4f58WaMJYLDo5UvnJGOVkpZSQ1oFpBaCOs54Jw2ziqJG2tKJlojHQlb0oKYLhvuZRsjG4OvesYfjYuZb0KmzjslJpWQHcSIciOuj1QyXbZ7Jfrdex6E_80Ab3_S3N9_Iv9AwNRWlc</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Shankar, R. Shiva</creator><creator>Raminaidu, Ch</creator><creator>Rajanikanth, J.</creator><creator>Raghaveni, J.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231215</creationdate><title>Frames extracted from video streaming to recognition of face: LBPH, FF and CNN</title><author>Shankar, R. Shiva ; Raminaidu, Ch ; Rajanikanth, J. ; Raghaveni, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-50e19f9ea8e7988a72a08d612b6cf5615cbe2872dc6436ba7e45b4200a5fd5773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biometric recognition systems</topic><topic>Cameras</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Frames (data processing)</topic><topic>Image processing</topic><topic>Video transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, R. Shiva</creatorcontrib><creatorcontrib>Raminaidu, Ch</creatorcontrib><creatorcontrib>Rajanikanth, J.</creatorcontrib><creatorcontrib>Raghaveni, J.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, R. Shiva</au><au>Raminaidu, Ch</au><au>Rajanikanth, J.</au><au>Raghaveni, J.</au><au>P, Thangaraj</au><au>H, Shankar</au><au>K, Mohana Sundaram</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Frames extracted from video streaming to recognition of face: LBPH, FF and CNN</atitle><btitle>AIP conference proceedings</btitle><date>2023-12-15</date><risdate>2023</risdate><volume>2901</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this project is to detect a human face and identify the person from the set of images from the database when the camera is streaming. A database is created by capturing frames by the camera. The LBPH algorithm, Fisher Face algorithms are used for Face Detection, Feature Extraction and Face Recognition. A Convolutional Neural Network with different layers is constructed, and the model is compiled. The result shows recognized faces when camera is streaming.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0178700</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2901 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2902133661 |
source | AIP Journals Complete |
subjects | Algorithms Artificial neural networks Biometric recognition systems Cameras Face recognition Feature extraction Frames (data processing) Image processing Video transmission |
title | Frames extracted from video streaming to recognition of face: LBPH, FF and CNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Frames%20extracted%20from%20video%20streaming%20to%20recognition%20of%20face:%20LBPH,%20FF%20and%20CNN&rft.btitle=AIP%20conference%20proceedings&rft.au=Shankar,%20R.%20Shiva&rft.date=2023-12-15&rft.volume=2901&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0178700&rft_dat=%3Cproquest_scita%3E2902133661%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902133661&rft_id=info:pmid/&rfr_iscdi=true |