Frames extracted from video streaming to recognition of face: LBPH, FF and CNN

There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this projec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shankar, R. Shiva, Raminaidu, Ch, Rajanikanth, J., Raghaveni, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2901
creator Shankar, R. Shiva
Raminaidu, Ch
Rajanikanth, J.
Raghaveni, J.
description There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this project is to detect a human face and identify the person from the set of images from the database when the camera is streaming. A database is created by capturing frames by the camera. The LBPH algorithm, Fisher Face algorithms are used for Face Detection, Feature Extraction and Face Recognition. A Convolutional Neural Network with different layers is constructed, and the model is compiled. The result shows recognized faces when camera is streaming.
doi_str_mv 10.1063/5.0178700
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2902133661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902133661</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-50e19f9ea8e7988a72a08d612b6cf5615cbe2872dc6436ba7e45b4200a5fd5773</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKsL3yDgTpz6JZn8jDstjhVKdaHgLmQySZniTGqSFn17W9rV3RzuuVyErglMCAh2zydApJIAJ2hEOCeFFEScohFAVRa0ZF_n6CKlFQCtpFQjtKij6V3C7jdHY7NrsY-hx9uudQGnHJ3pu2GJc8DR2bAcutyFAQePvbHuAc-f3md3uK6xGVo8XSwu0Zk338ldHXOMPuvnj-msmL-9vE4f58WaMJYLDo5UvnJGOVkpZSQ1oFpBaCOs54Jw2ziqJG2tKJlojHQlb0oKYLhvuZRsjG4OvesYfjYuZb0KmzjslJpWQHcSIciOuj1QyXbZ7Jfrdex6E_80Ab3_S3N9_Iv9AwNRWlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2902133661</pqid></control><display><type>conference_proceeding</type><title>Frames extracted from video streaming to recognition of face: LBPH, FF and CNN</title><source>AIP Journals Complete</source><creator>Shankar, R. Shiva ; Raminaidu, Ch ; Rajanikanth, J. ; Raghaveni, J.</creator><contributor>P, Thangaraj ; H, Shankar ; K, Mohana Sundaram</contributor><creatorcontrib>Shankar, R. Shiva ; Raminaidu, Ch ; Rajanikanth, J. ; Raghaveni, J. ; P, Thangaraj ; H, Shankar ; K, Mohana Sundaram</creatorcontrib><description>There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this project is to detect a human face and identify the person from the set of images from the database when the camera is streaming. A database is created by capturing frames by the camera. The LBPH algorithm, Fisher Face algorithms are used for Face Detection, Feature Extraction and Face Recognition. A Convolutional Neural Network with different layers is constructed, and the model is compiled. The result shows recognized faces when camera is streaming.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0178700</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Biometric recognition systems ; Cameras ; Face recognition ; Feature extraction ; Frames (data processing) ; Image processing ; Video transmission</subject><ispartof>AIP conference proceedings, 2023, Vol.2901 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0178700$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>P, Thangaraj</contributor><contributor>H, Shankar</contributor><contributor>K, Mohana Sundaram</contributor><creatorcontrib>Shankar, R. Shiva</creatorcontrib><creatorcontrib>Raminaidu, Ch</creatorcontrib><creatorcontrib>Rajanikanth, J.</creatorcontrib><creatorcontrib>Raghaveni, J.</creatorcontrib><title>Frames extracted from video streaming to recognition of face: LBPH, FF and CNN</title><title>AIP conference proceedings</title><description>There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this project is to detect a human face and identify the person from the set of images from the database when the camera is streaming. A database is created by capturing frames by the camera. The LBPH algorithm, Fisher Face algorithms are used for Face Detection, Feature Extraction and Face Recognition. A Convolutional Neural Network with different layers is constructed, and the model is compiled. The result shows recognized faces when camera is streaming.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biometric recognition systems</subject><subject>Cameras</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Frames (data processing)</subject><subject>Image processing</subject><subject>Video transmission</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1KAzEYRYMoWKsL3yDgTpz6JZn8jDstjhVKdaHgLmQySZniTGqSFn17W9rV3RzuuVyErglMCAh2zydApJIAJ2hEOCeFFEScohFAVRa0ZF_n6CKlFQCtpFQjtKij6V3C7jdHY7NrsY-hx9uudQGnHJ3pu2GJc8DR2bAcutyFAQePvbHuAc-f3md3uK6xGVo8XSwu0Zk338ldHXOMPuvnj-msmL-9vE4f58WaMJYLDo5UvnJGOVkpZSQ1oFpBaCOs54Jw2ziqJG2tKJlojHQlb0oKYLhvuZRsjG4OvesYfjYuZb0KmzjslJpWQHcSIciOuj1QyXbZ7Jfrdex6E_80Ab3_S3N9_Iv9AwNRWlc</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Shankar, R. Shiva</creator><creator>Raminaidu, Ch</creator><creator>Rajanikanth, J.</creator><creator>Raghaveni, J.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231215</creationdate><title>Frames extracted from video streaming to recognition of face: LBPH, FF and CNN</title><author>Shankar, R. Shiva ; Raminaidu, Ch ; Rajanikanth, J. ; Raghaveni, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-50e19f9ea8e7988a72a08d612b6cf5615cbe2872dc6436ba7e45b4200a5fd5773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biometric recognition systems</topic><topic>Cameras</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Frames (data processing)</topic><topic>Image processing</topic><topic>Video transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, R. Shiva</creatorcontrib><creatorcontrib>Raminaidu, Ch</creatorcontrib><creatorcontrib>Rajanikanth, J.</creatorcontrib><creatorcontrib>Raghaveni, J.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, R. Shiva</au><au>Raminaidu, Ch</au><au>Rajanikanth, J.</au><au>Raghaveni, J.</au><au>P, Thangaraj</au><au>H, Shankar</au><au>K, Mohana Sundaram</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Frames extracted from video streaming to recognition of face: LBPH, FF and CNN</atitle><btitle>AIP conference proceedings</btitle><date>2023-12-15</date><risdate>2023</risdate><volume>2901</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>There are different methods that can be used to uniquely identify one individual from another like Face recognition, Fingerprints, Iris, Signature, etc. Face recognition has gained a lot of popularity due to its wide range of applications in image processing, biometrics. The objective of this project is to detect a human face and identify the person from the set of images from the database when the camera is streaming. A database is created by capturing frames by the camera. The LBPH algorithm, Fisher Face algorithms are used for Face Detection, Feature Extraction and Face Recognition. A Convolutional Neural Network with different layers is constructed, and the model is compiled. The result shows recognized faces when camera is streaming.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0178700</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2901 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2902133661
source AIP Journals Complete
subjects Algorithms
Artificial neural networks
Biometric recognition systems
Cameras
Face recognition
Feature extraction
Frames (data processing)
Image processing
Video transmission
title Frames extracted from video streaming to recognition of face: LBPH, FF and CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Frames%20extracted%20from%20video%20streaming%20to%20recognition%20of%20face:%20LBPH,%20FF%20and%20CNN&rft.btitle=AIP%20conference%20proceedings&rft.au=Shankar,%20R.%20Shiva&rft.date=2023-12-15&rft.volume=2901&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0178700&rft_dat=%3Cproquest_scita%3E2902133661%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902133661&rft_id=info:pmid/&rfr_iscdi=true