Fiber-Optic Pressure Sensor Based on PDMS Polymer Diaphragm-Formed Vacuum Microcavity With Low Temperature-Pressure Cross-Sensitivity

Temperature-pressure cross-sensitivity is a thorny issue that affects the measurement accuracy of polymer diaphragm pressure sensors. To alleviate the aforementioned issue, we demonstrate a novel optical Fabry-Perot interferometer (FPI) pressure sensor based on polydimethylsiloxane (PDMS) polymer di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-12, Vol.23 (24), p.30420-30428
Hauptverfasser: Gao, Zihang, Song, Jingming, Zhao, Yanjin, Xu, Xiaobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30428
container_issue 24
container_start_page 30420
container_title IEEE sensors journal
container_volume 23
creator Gao, Zihang
Song, Jingming
Zhao, Yanjin
Xu, Xiaobin
description Temperature-pressure cross-sensitivity is a thorny issue that affects the measurement accuracy of polymer diaphragm pressure sensors. To alleviate the aforementioned issue, we demonstrate a novel optical Fabry-Perot interferometer (FPI) pressure sensor based on polydimethylsiloxane (PDMS) polymer diaphragm-formed vacuum microcavity. A technique of liquid encapsulation with vacuum pump oil is innovatively proposed. The vacuum Fabry-Perot (FP) microcavity is fabricated by assembling a capillary filled with vacuum pump oil and a fiber-tip FP cavity formed by the PDMS polymer diaphragm in a vacuum environment. The structural dimension of the sensor and the initial pressure in the vacuum microcavity can be precisely and conveniently controlled. The optimal parameters of the sensor are determined through finite element method (FEM) to help achieve low temperature-pressure cross-sensitivity. From the experimental results, the proposed FP pressure sensor with a polymer diaphragm thickness of 33.1 ~\mu \text{m} exhibits a wavelength pressure sensitivity as high as 1.58 nm/kPa in the range of 0-2 kPa and a temperature-pressure cross-sensitivity as low as 0.10 kPa/°C, which proves that the temperature crosstalk is effectively suppressed. Moreover, the proposed sensor has several advantageous characteristics including cost-effectiveness, reliable repeatability, long-term stability, and mass-producible, which makes it suitable for monitoring small-range static hydrostatic pressure precisely over a dynamic temperature range.
doi_str_mv 10.1109/JSEN.2023.3328391
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2902126208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10308724</ieee_id><sourcerecordid>2902126208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-89971539cfe0b4948351809df1c426b06370906d8b358ca8a03d45fe6c440da23</originalsourceid><addsrcrecordid>eNpNkElPwzAQhSMEEusPQOJgibPLeEliH6ELiwqt1LLcItdxqKumDnYC6g_gf5OoCHGaOXzvvZkXRecEeoSAvHqYDZ96FCjrMUYFk2QvOiJxLDBJudjvdgaYs_TtMDoOYQVAZBqnR9H3yC6Mx5OqthpNvQmh8QbNzCY4j25UMDlyGzQdPM7Q1K23pfFoYFW19Oq9xCPnyxZ4UbppSvRotXdafdp6i15tvURj94XmpqyMV3Xriv_s-96FgLsQW9uOP40OCrUO5ux3nkTPo-G8f4fHk9v7_vUYayp5jYWUafuI1IWBBZdcsJgIkHlBNKfJAhKWgoQkFwsWC62EApbzuDCJ5hxyRdlJdLnzrbz7aEyos5Vr_KaNzKgESmhCQbQU2VG6u9ObIqu8LZXfZgSyru2sazvr2s5-2241FzuNNcb84xmIlHL2A-TEfGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902126208</pqid></control><display><type>article</type><title>Fiber-Optic Pressure Sensor Based on PDMS Polymer Diaphragm-Formed Vacuum Microcavity With Low Temperature-Pressure Cross-Sensitivity</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Zihang ; Song, Jingming ; Zhao, Yanjin ; Xu, Xiaobin</creator><creatorcontrib>Gao, Zihang ; Song, Jingming ; Zhao, Yanjin ; Xu, Xiaobin</creatorcontrib><description>Temperature-pressure cross-sensitivity is a thorny issue that affects the measurement accuracy of polymer diaphragm pressure sensors. To alleviate the aforementioned issue, we demonstrate a novel optical Fabry-Perot interferometer (FPI) pressure sensor based on polydimethylsiloxane (PDMS) polymer diaphragm-formed vacuum microcavity. A technique of liquid encapsulation with vacuum pump oil is innovatively proposed. The vacuum Fabry-Perot (FP) microcavity is fabricated by assembling a capillary filled with vacuum pump oil and a fiber-tip FP cavity formed by the PDMS polymer diaphragm in a vacuum environment. The structural dimension of the sensor and the initial pressure in the vacuum microcavity can be precisely and conveniently controlled. The optimal parameters of the sensor are determined through finite element method (FEM) to help achieve low temperature-pressure cross-sensitivity. From the experimental results, the proposed FP pressure sensor with a polymer diaphragm thickness of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;33.1 ~\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; exhibits a wavelength pressure sensitivity as high as 1.58 nm/kPa in the range of 0-2 kPa and a temperature-pressure cross-sensitivity as low as 0.10 kPa/°C, which proves that the temperature crosstalk is effectively suppressed. Moreover, the proposed sensor has several advantageous characteristics including cost-effectiveness, reliable repeatability, long-term stability, and mass-producible, which makes it suitable for monitoring small-range static hydrostatic pressure precisely over a dynamic temperature range.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3328391</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Fabry-Perot ; Fabry–Perot (FP) pressure sensor ; Fiber optics ; Finite element method ; Hydrostatic pressure ; Initial pressure ; Low temperature ; Microcavities ; Optical fiber sensors ; Polydimethylsiloxane ; polydimethylsiloxane (PDMS) polymer diaphragm ; Polymers ; Pressure sensors ; Sensitivity ; Sensors ; Temperature sensors ; temperature–pressure cross-sensitivity ; Thermal expansion ; vacuum microcavity ; Vacuum pumps</subject><ispartof>IEEE sensors journal, 2023-12, Vol.23 (24), p.30420-30428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-89971539cfe0b4948351809df1c426b06370906d8b358ca8a03d45fe6c440da23</citedby><cites>FETCH-LOGICAL-c294t-89971539cfe0b4948351809df1c426b06370906d8b358ca8a03d45fe6c440da23</cites><orcidid>0000-0003-2657-6350 ; 0009-0006-6436-0576 ; 0000-0002-1904-0526 ; 0000-0001-8363-5092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10308724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10308724$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Zihang</creatorcontrib><creatorcontrib>Song, Jingming</creatorcontrib><creatorcontrib>Zhao, Yanjin</creatorcontrib><creatorcontrib>Xu, Xiaobin</creatorcontrib><title>Fiber-Optic Pressure Sensor Based on PDMS Polymer Diaphragm-Formed Vacuum Microcavity With Low Temperature-Pressure Cross-Sensitivity</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Temperature-pressure cross-sensitivity is a thorny issue that affects the measurement accuracy of polymer diaphragm pressure sensors. To alleviate the aforementioned issue, we demonstrate a novel optical Fabry-Perot interferometer (FPI) pressure sensor based on polydimethylsiloxane (PDMS) polymer diaphragm-formed vacuum microcavity. A technique of liquid encapsulation with vacuum pump oil is innovatively proposed. The vacuum Fabry-Perot (FP) microcavity is fabricated by assembling a capillary filled with vacuum pump oil and a fiber-tip FP cavity formed by the PDMS polymer diaphragm in a vacuum environment. The structural dimension of the sensor and the initial pressure in the vacuum microcavity can be precisely and conveniently controlled. The optimal parameters of the sensor are determined through finite element method (FEM) to help achieve low temperature-pressure cross-sensitivity. From the experimental results, the proposed FP pressure sensor with a polymer diaphragm thickness of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;33.1 ~\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; exhibits a wavelength pressure sensitivity as high as 1.58 nm/kPa in the range of 0-2 kPa and a temperature-pressure cross-sensitivity as low as 0.10 kPa/°C, which proves that the temperature crosstalk is effectively suppressed. Moreover, the proposed sensor has several advantageous characteristics including cost-effectiveness, reliable repeatability, long-term stability, and mass-producible, which makes it suitable for monitoring small-range static hydrostatic pressure precisely over a dynamic temperature range.</description><subject>Fabry-Perot</subject><subject>Fabry–Perot (FP) pressure sensor</subject><subject>Fiber optics</subject><subject>Finite element method</subject><subject>Hydrostatic pressure</subject><subject>Initial pressure</subject><subject>Low temperature</subject><subject>Microcavities</subject><subject>Optical fiber sensors</subject><subject>Polydimethylsiloxane</subject><subject>polydimethylsiloxane (PDMS) polymer diaphragm</subject><subject>Polymers</subject><subject>Pressure sensors</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Temperature sensors</subject><subject>temperature–pressure cross-sensitivity</subject><subject>Thermal expansion</subject><subject>vacuum microcavity</subject><subject>Vacuum pumps</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkElPwzAQhSMEEusPQOJgibPLeEliH6ELiwqt1LLcItdxqKumDnYC6g_gf5OoCHGaOXzvvZkXRecEeoSAvHqYDZ96FCjrMUYFk2QvOiJxLDBJudjvdgaYs_TtMDoOYQVAZBqnR9H3yC6Mx5OqthpNvQmh8QbNzCY4j25UMDlyGzQdPM7Q1K23pfFoYFW19Oq9xCPnyxZ4UbppSvRotXdafdp6i15tvURj94XmpqyMV3Xriv_s-96FgLsQW9uOP40OCrUO5ux3nkTPo-G8f4fHk9v7_vUYayp5jYWUafuI1IWBBZdcsJgIkHlBNKfJAhKWgoQkFwsWC62EApbzuDCJ5hxyRdlJdLnzrbz7aEyos5Vr_KaNzKgESmhCQbQU2VG6u9ObIqu8LZXfZgSyru2sazvr2s5-2241FzuNNcb84xmIlHL2A-TEfGA</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Gao, Zihang</creator><creator>Song, Jingming</creator><creator>Zhao, Yanjin</creator><creator>Xu, Xiaobin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2657-6350</orcidid><orcidid>https://orcid.org/0009-0006-6436-0576</orcidid><orcidid>https://orcid.org/0000-0002-1904-0526</orcidid><orcidid>https://orcid.org/0000-0001-8363-5092</orcidid></search><sort><creationdate>20231215</creationdate><title>Fiber-Optic Pressure Sensor Based on PDMS Polymer Diaphragm-Formed Vacuum Microcavity With Low Temperature-Pressure Cross-Sensitivity</title><author>Gao, Zihang ; Song, Jingming ; Zhao, Yanjin ; Xu, Xiaobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-89971539cfe0b4948351809df1c426b06370906d8b358ca8a03d45fe6c440da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fabry-Perot</topic><topic>Fabry–Perot (FP) pressure sensor</topic><topic>Fiber optics</topic><topic>Finite element method</topic><topic>Hydrostatic pressure</topic><topic>Initial pressure</topic><topic>Low temperature</topic><topic>Microcavities</topic><topic>Optical fiber sensors</topic><topic>Polydimethylsiloxane</topic><topic>polydimethylsiloxane (PDMS) polymer diaphragm</topic><topic>Polymers</topic><topic>Pressure sensors</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Temperature sensors</topic><topic>temperature–pressure cross-sensitivity</topic><topic>Thermal expansion</topic><topic>vacuum microcavity</topic><topic>Vacuum pumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Zihang</creatorcontrib><creatorcontrib>Song, Jingming</creatorcontrib><creatorcontrib>Zhao, Yanjin</creatorcontrib><creatorcontrib>Xu, Xiaobin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Zihang</au><au>Song, Jingming</au><au>Zhao, Yanjin</au><au>Xu, Xiaobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber-Optic Pressure Sensor Based on PDMS Polymer Diaphragm-Formed Vacuum Microcavity With Low Temperature-Pressure Cross-Sensitivity</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-12-15</date><risdate>2023</risdate><volume>23</volume><issue>24</issue><spage>30420</spage><epage>30428</epage><pages>30420-30428</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Temperature-pressure cross-sensitivity is a thorny issue that affects the measurement accuracy of polymer diaphragm pressure sensors. To alleviate the aforementioned issue, we demonstrate a novel optical Fabry-Perot interferometer (FPI) pressure sensor based on polydimethylsiloxane (PDMS) polymer diaphragm-formed vacuum microcavity. A technique of liquid encapsulation with vacuum pump oil is innovatively proposed. The vacuum Fabry-Perot (FP) microcavity is fabricated by assembling a capillary filled with vacuum pump oil and a fiber-tip FP cavity formed by the PDMS polymer diaphragm in a vacuum environment. The structural dimension of the sensor and the initial pressure in the vacuum microcavity can be precisely and conveniently controlled. The optimal parameters of the sensor are determined through finite element method (FEM) to help achieve low temperature-pressure cross-sensitivity. From the experimental results, the proposed FP pressure sensor with a polymer diaphragm thickness of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;33.1 ~\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; exhibits a wavelength pressure sensitivity as high as 1.58 nm/kPa in the range of 0-2 kPa and a temperature-pressure cross-sensitivity as low as 0.10 kPa/°C, which proves that the temperature crosstalk is effectively suppressed. Moreover, the proposed sensor has several advantageous characteristics including cost-effectiveness, reliable repeatability, long-term stability, and mass-producible, which makes it suitable for monitoring small-range static hydrostatic pressure precisely over a dynamic temperature range.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3328391</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2657-6350</orcidid><orcidid>https://orcid.org/0009-0006-6436-0576</orcidid><orcidid>https://orcid.org/0000-0002-1904-0526</orcidid><orcidid>https://orcid.org/0000-0001-8363-5092</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-12, Vol.23 (24), p.30420-30428
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2902126208
source IEEE Electronic Library (IEL)
subjects Fabry-Perot
Fabry–Perot (FP) pressure sensor
Fiber optics
Finite element method
Hydrostatic pressure
Initial pressure
Low temperature
Microcavities
Optical fiber sensors
Polydimethylsiloxane
polydimethylsiloxane (PDMS) polymer diaphragm
Polymers
Pressure sensors
Sensitivity
Sensors
Temperature sensors
temperature–pressure cross-sensitivity
Thermal expansion
vacuum microcavity
Vacuum pumps
title Fiber-Optic Pressure Sensor Based on PDMS Polymer Diaphragm-Formed Vacuum Microcavity With Low Temperature-Pressure Cross-Sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber-Optic%20Pressure%20Sensor%20Based%20on%20PDMS%20Polymer%20Diaphragm-Formed%20Vacuum%20Microcavity%20With%20Low%20Temperature-Pressure%20Cross-Sensitivity&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gao,%20Zihang&rft.date=2023-12-15&rft.volume=23&rft.issue=24&rft.spage=30420&rft.epage=30428&rft.pages=30420-30428&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3328391&rft_dat=%3Cproquest_RIE%3E2902126208%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902126208&rft_id=info:pmid/&rft_ieee_id=10308724&rfr_iscdi=true