Algorithm to Suppress Drift for Micromirror and Other Intensity-Modulated Hydrogen Sensors

Here, a method to suppress drift in intensity-modulated sensors is presented that preserves the advantages of such sensors including simplicity and low-cost components. This method is illustrated using metal hydride-based optical hydrogen sensors that can reliably, accurately, and quickly sense hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-12, Vol.23 (24), p.30720-30727
1. Verfasser: Bannenberg, Lars J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30727
container_issue 24
container_start_page 30720
container_title IEEE sensors journal
container_volume 23
creator Bannenberg, Lars J.
description Here, a method to suppress drift in intensity-modulated sensors is presented that preserves the advantages of such sensors including simplicity and low-cost components. This method is illustrated using metal hydride-based optical hydrogen sensors that can reliably, accurately, and quickly sense hydrogen across a large concentration range. These sensors rely on a metal hydride-sensing material that reversibly absorbs hydrogen when a hydrogen concentration is present. In turn, this causes a change in the optical properties which can be probed to determine the hydrogen concentration. To do this, two major methods exist: intensity- and frequency-modulated sensors. While intensity-modulated sensors are typically simpler and cheaper to fabricate, they may suffer from drifting light sources and unstable alignments. Using the fact that exposure to hydrogen reduces (increases) the optical transmission (reflectivity) of a Ta-based sensing material for blue/green light while it increases (decreases) the transmission for (near) infrared (IR) light, it is possible to differentiate between a changing hydrogen concentration and a drifting light source: Whereas the signal of both wavelengths is positively correlated for a drifting light source, the signal is negatively correlated when the hydrogen concentration changes. Using this algorithm, the drift on the signal can be reduced by a factor of 5 for intensity-modulated sensors. In a more general perspective, the wealth of information in the wavelength-dependent optical response allows for more advanced approaches to improve the signal and accuracy of (optical) sensors.
doi_str_mv 10.1109/JSEN.2023.3328642
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2902125977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10314456</ieee_id><sourcerecordid>2902125977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f953a5d701a143b1b0a54b5669a590a8341a436947f188899a46b4b14dd96bcc3</originalsourceid><addsrcrecordid>eNpNkMFPwjAUxhujiYj-ASYemnge9q3tuh4JgmBADmhivDTd1sEIrLPtDvz3boGDp_cl7_vey_dD6BHICIDIl_fN9GMUk5iOKI3ThMVXaACcpxEIll73mpKIUfF9i-683xMCUnAxQD_jw9a6KuyOOFi8aZvGGe_xq6vKgEvr8KrKnT1WznVa1wVeh51xeFEHU_sqnKKVLdqDDqbA81Ph7NbUeNOtrPP36KbUB28eLnOIvmbTz8k8Wq7fFpPxMsopFSEqJaeaF4KABkYzyIjmLONJIjWXRKeUgWY0kUyUkKaplJolGcuAFYVMsjynQ_R8vts4-9saH9Tetq7uXqpYkhhiLoXoXHB2dXW8d6ZUjauO2p0UENUjVD1C1SNUF4Rd5umcqYwx__wUGOMJ_QOylG0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902125977</pqid></control><display><type>article</type><title>Algorithm to Suppress Drift for Micromirror and Other Intensity-Modulated Hydrogen Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Bannenberg, Lars J.</creator><creatorcontrib>Bannenberg, Lars J.</creatorcontrib><description>Here, a method to suppress drift in intensity-modulated sensors is presented that preserves the advantages of such sensors including simplicity and low-cost components. This method is illustrated using metal hydride-based optical hydrogen sensors that can reliably, accurately, and quickly sense hydrogen across a large concentration range. These sensors rely on a metal hydride-sensing material that reversibly absorbs hydrogen when a hydrogen concentration is present. In turn, this causes a change in the optical properties which can be probed to determine the hydrogen concentration. To do this, two major methods exist: intensity- and frequency-modulated sensors. While intensity-modulated sensors are typically simpler and cheaper to fabricate, they may suffer from drifting light sources and unstable alignments. Using the fact that exposure to hydrogen reduces (increases) the optical transmission (reflectivity) of a Ta-based sensing material for blue/green light while it increases (decreases) the transmission for (near) infrared (IR) light, it is possible to differentiate between a changing hydrogen concentration and a drifting light source: Whereas the signal of both wavelengths is positively correlated for a drifting light source, the signal is negatively correlated when the hydrogen concentration changes. Using this algorithm, the drift on the signal can be reduced by a factor of 5 for intensity-modulated sensors. In a more general perspective, the wealth of information in the wavelength-dependent optical response allows for more advanced approaches to improve the signal and accuracy of (optical) sensors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3328642</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm ; Algorithms ; Chemical sensors ; Drift ; Hydrogen ; Light sources ; Metal hydrides ; Optical communication ; Optical fiber sensors ; Optical fibers ; Optical films ; optical hydrogen sensing ; Optical properties ; Optical reflection ; Optical sensors ; Sensors</subject><ispartof>IEEE sensors journal, 2023-12, Vol.23 (24), p.30720-30727</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f953a5d701a143b1b0a54b5669a590a8341a436947f188899a46b4b14dd96bcc3</citedby><cites>FETCH-LOGICAL-c337t-f953a5d701a143b1b0a54b5669a590a8341a436947f188899a46b4b14dd96bcc3</cites><orcidid>0000-0001-8150-3694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10314456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10314456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bannenberg, Lars J.</creatorcontrib><title>Algorithm to Suppress Drift for Micromirror and Other Intensity-Modulated Hydrogen Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Here, a method to suppress drift in intensity-modulated sensors is presented that preserves the advantages of such sensors including simplicity and low-cost components. This method is illustrated using metal hydride-based optical hydrogen sensors that can reliably, accurately, and quickly sense hydrogen across a large concentration range. These sensors rely on a metal hydride-sensing material that reversibly absorbs hydrogen when a hydrogen concentration is present. In turn, this causes a change in the optical properties which can be probed to determine the hydrogen concentration. To do this, two major methods exist: intensity- and frequency-modulated sensors. While intensity-modulated sensors are typically simpler and cheaper to fabricate, they may suffer from drifting light sources and unstable alignments. Using the fact that exposure to hydrogen reduces (increases) the optical transmission (reflectivity) of a Ta-based sensing material for blue/green light while it increases (decreases) the transmission for (near) infrared (IR) light, it is possible to differentiate between a changing hydrogen concentration and a drifting light source: Whereas the signal of both wavelengths is positively correlated for a drifting light source, the signal is negatively correlated when the hydrogen concentration changes. Using this algorithm, the drift on the signal can be reduced by a factor of 5 for intensity-modulated sensors. In a more general perspective, the wealth of information in the wavelength-dependent optical response allows for more advanced approaches to improve the signal and accuracy of (optical) sensors.</description><subject>Algorithm</subject><subject>Algorithms</subject><subject>Chemical sensors</subject><subject>Drift</subject><subject>Hydrogen</subject><subject>Light sources</subject><subject>Metal hydrides</subject><subject>Optical communication</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical films</subject><subject>optical hydrogen sensing</subject><subject>Optical properties</subject><subject>Optical reflection</subject><subject>Optical sensors</subject><subject>Sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFPwjAUxhujiYj-ASYemnge9q3tuh4JgmBADmhivDTd1sEIrLPtDvz3boGDp_cl7_vey_dD6BHICIDIl_fN9GMUk5iOKI3ThMVXaACcpxEIll73mpKIUfF9i-683xMCUnAxQD_jw9a6KuyOOFi8aZvGGe_xq6vKgEvr8KrKnT1WznVa1wVeh51xeFEHU_sqnKKVLdqDDqbA81Ph7NbUeNOtrPP36KbUB28eLnOIvmbTz8k8Wq7fFpPxMsopFSEqJaeaF4KABkYzyIjmLONJIjWXRKeUgWY0kUyUkKaplJolGcuAFYVMsjynQ_R8vts4-9saH9Tetq7uXqpYkhhiLoXoXHB2dXW8d6ZUjauO2p0UENUjVD1C1SNUF4Rd5umcqYwx__wUGOMJ_QOylG0o</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Bannenberg, Lars J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8150-3694</orcidid></search><sort><creationdate>20231215</creationdate><title>Algorithm to Suppress Drift for Micromirror and Other Intensity-Modulated Hydrogen Sensors</title><author>Bannenberg, Lars J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f953a5d701a143b1b0a54b5669a590a8341a436947f188899a46b4b14dd96bcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithm</topic><topic>Algorithms</topic><topic>Chemical sensors</topic><topic>Drift</topic><topic>Hydrogen</topic><topic>Light sources</topic><topic>Metal hydrides</topic><topic>Optical communication</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical films</topic><topic>optical hydrogen sensing</topic><topic>Optical properties</topic><topic>Optical reflection</topic><topic>Optical sensors</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bannenberg, Lars J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bannenberg, Lars J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm to Suppress Drift for Micromirror and Other Intensity-Modulated Hydrogen Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-12-15</date><risdate>2023</risdate><volume>23</volume><issue>24</issue><spage>30720</spage><epage>30727</epage><pages>30720-30727</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Here, a method to suppress drift in intensity-modulated sensors is presented that preserves the advantages of such sensors including simplicity and low-cost components. This method is illustrated using metal hydride-based optical hydrogen sensors that can reliably, accurately, and quickly sense hydrogen across a large concentration range. These sensors rely on a metal hydride-sensing material that reversibly absorbs hydrogen when a hydrogen concentration is present. In turn, this causes a change in the optical properties which can be probed to determine the hydrogen concentration. To do this, two major methods exist: intensity- and frequency-modulated sensors. While intensity-modulated sensors are typically simpler and cheaper to fabricate, they may suffer from drifting light sources and unstable alignments. Using the fact that exposure to hydrogen reduces (increases) the optical transmission (reflectivity) of a Ta-based sensing material for blue/green light while it increases (decreases) the transmission for (near) infrared (IR) light, it is possible to differentiate between a changing hydrogen concentration and a drifting light source: Whereas the signal of both wavelengths is positively correlated for a drifting light source, the signal is negatively correlated when the hydrogen concentration changes. Using this algorithm, the drift on the signal can be reduced by a factor of 5 for intensity-modulated sensors. In a more general perspective, the wealth of information in the wavelength-dependent optical response allows for more advanced approaches to improve the signal and accuracy of (optical) sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3328642</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8150-3694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-12, Vol.23 (24), p.30720-30727
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2902125977
source IEEE Electronic Library (IEL)
subjects Algorithm
Algorithms
Chemical sensors
Drift
Hydrogen
Light sources
Metal hydrides
Optical communication
Optical fiber sensors
Optical fibers
Optical films
optical hydrogen sensing
Optical properties
Optical reflection
Optical sensors
Sensors
title Algorithm to Suppress Drift for Micromirror and Other Intensity-Modulated Hydrogen Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm%20to%20Suppress%20Drift%20for%20Micromirror%20and%20Other%20Intensity-Modulated%20Hydrogen%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Bannenberg,%20Lars%20J.&rft.date=2023-12-15&rft.volume=23&rft.issue=24&rft.spage=30720&rft.epage=30727&rft.pages=30720-30727&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3328642&rft_dat=%3Cproquest_RIE%3E2902125977%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902125977&rft_id=info:pmid/&rft_ieee_id=10314456&rfr_iscdi=true