Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing

Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2023-11, Vol.16 (6), p.4328-4344
Hauptverfasser: Nkenyereye, Lionel, Baeg, Kang-Jun, Chung, Wan-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4344
container_issue 6
container_start_page 4328
container_title IEEE transactions on services computing
container_volume 16
creator Nkenyereye, Lionel
Baeg, Kang-Jun
Chung, Wan-Young
description Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system.
doi_str_mv 10.1109/TSC.2023.3320752
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2902116892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10268016</ieee_id><sourcerecordid>2902116892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-92676003f39128b5289b5bf1431b113e08b7869bdcd6cc00b532cfd0ab07072a3</originalsourceid><addsrcrecordid>eNpNkM1PwzAMxSMEEmNw58ChEucOx1k_ckRlwKRJoDHOVZO6U6YtKUl3gL-elu7AyfbTe7b1Y-yWw4xzkA-bj2KGgGImBEKW4BmboMgwBoT5OZtwKWTMRTa_ZFch7ABSzHM5Yf6JqI3WZGzjvKYD2S5aUeWtsduol6LC2a4ylrz5oTpa1FuKlraj_d5syephaMj_dWv6OlLoonfvNIUwLDA2WrrNmCrcoT12vXrNLppqH-jmVKfs83mxKV7j1dvLsnhcxRoldrHENEsBRCMkx1wlmEuVqIbPBVecC4JcZXkqVa3rVGsAlQjUTQ2VggwyrMSU3Y97W-_-Pit37uhtf7JECch5mkvsXTC6tHcheGrK1ptD5b9LDuVAtuzJlgPZ8kS2j9yNEUNE_-yY5sBT8Qt73HSz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902116892</pqid></control><display><type>article</type><title>Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Nkenyereye, Lionel ; Baeg, Kang-Jun ; Chung, Wan-Young</creator><creatorcontrib>Nkenyereye, Lionel ; Baeg, Kang-Jun ; Chung, Wan-Young</creatorcontrib><description>Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2023.3320752</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AI model inference ; Algorithms ; Artificial intelligence ; Cloud computing ; Clustering algorithms ; Clusters ; Computational modeling ; Containers ; Data collection ; Data models ; Deep learning ; deep reinforcement learning ; Edge computing ; edge intelligence ; Inference ; Inference algorithms ; Intelligence ; Internet of Things ; IoT edge computing ; IoT service layer ; Machine learning ; Provisioning ; Wearable technology ; Workload ; Workloads</subject><ispartof>IEEE transactions on services computing, 2023-11, Vol.16 (6), p.4328-4344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-92676003f39128b5289b5bf1431b113e08b7869bdcd6cc00b532cfd0ab07072a3</citedby><cites>FETCH-LOGICAL-c292t-92676003f39128b5289b5bf1431b113e08b7869bdcd6cc00b532cfd0ab07072a3</cites><orcidid>0000-0001-6714-4402 ; 0000-0002-0121-855X ; 0000-0001-7821-2458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10268016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10268016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nkenyereye, Lionel</creatorcontrib><creatorcontrib>Baeg, Kang-Jun</creatorcontrib><creatorcontrib>Chung, Wan-Young</creatorcontrib><title>Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system.</description><subject>AI model inference</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Computational modeling</subject><subject>Containers</subject><subject>Data collection</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Edge computing</subject><subject>edge intelligence</subject><subject>Inference</subject><subject>Inference algorithms</subject><subject>Intelligence</subject><subject>Internet of Things</subject><subject>IoT edge computing</subject><subject>IoT service layer</subject><subject>Machine learning</subject><subject>Provisioning</subject><subject>Wearable technology</subject><subject>Workload</subject><subject>Workloads</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PwzAMxSMEEmNw58ChEucOx1k_ckRlwKRJoDHOVZO6U6YtKUl3gL-elu7AyfbTe7b1Y-yWw4xzkA-bj2KGgGImBEKW4BmboMgwBoT5OZtwKWTMRTa_ZFch7ABSzHM5Yf6JqI3WZGzjvKYD2S5aUeWtsduol6LC2a4ylrz5oTpa1FuKlraj_d5syephaMj_dWv6OlLoonfvNIUwLDA2WrrNmCrcoT12vXrNLppqH-jmVKfs83mxKV7j1dvLsnhcxRoldrHENEsBRCMkx1wlmEuVqIbPBVecC4JcZXkqVa3rVGsAlQjUTQ2VggwyrMSU3Y97W-_-Pit37uhtf7JECch5mkvsXTC6tHcheGrK1ptD5b9LDuVAtuzJlgPZ8kS2j9yNEUNE_-yY5sBT8Qt73HSz</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Nkenyereye, Lionel</creator><creator>Baeg, Kang-Jun</creator><creator>Chung, Wan-Young</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6714-4402</orcidid><orcidid>https://orcid.org/0000-0002-0121-855X</orcidid><orcidid>https://orcid.org/0000-0001-7821-2458</orcidid></search><sort><creationdate>20231101</creationdate><title>Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing</title><author>Nkenyereye, Lionel ; Baeg, Kang-Jun ; Chung, Wan-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-92676003f39128b5289b5bf1431b113e08b7869bdcd6cc00b532cfd0ab07072a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AI model inference</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Computational modeling</topic><topic>Containers</topic><topic>Data collection</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Edge computing</topic><topic>edge intelligence</topic><topic>Inference</topic><topic>Inference algorithms</topic><topic>Intelligence</topic><topic>Internet of Things</topic><topic>IoT edge computing</topic><topic>IoT service layer</topic><topic>Machine learning</topic><topic>Provisioning</topic><topic>Wearable technology</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nkenyereye, Lionel</creatorcontrib><creatorcontrib>Baeg, Kang-Jun</creatorcontrib><creatorcontrib>Chung, Wan-Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nkenyereye, Lionel</au><au>Baeg, Kang-Jun</au><au>Chung, Wan-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>16</volume><issue>6</issue><spage>4328</spage><epage>4344</epage><pages>4328-4344</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2023.3320752</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6714-4402</orcidid><orcidid>https://orcid.org/0000-0002-0121-855X</orcidid><orcidid>https://orcid.org/0000-0001-7821-2458</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2023-11, Vol.16 (6), p.4328-4344
issn 1939-1374
2372-0204
language eng
recordid cdi_proquest_journals_2902116892
source IEEE Electronic Library (IEL)
subjects AI model inference
Algorithms
Artificial intelligence
Cloud computing
Clustering algorithms
Clusters
Computational modeling
Containers
Data collection
Data models
Deep learning
deep reinforcement learning
Edge computing
edge intelligence
Inference
Inference algorithms
Intelligence
Internet of Things
IoT edge computing
IoT service layer
Machine learning
Provisioning
Wearable technology
Workload
Workloads
title Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning%20for%20Containerized%20Edge%20Intelligence%20Inference%20Request%20Processing%20in%20IoT%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Nkenyereye,%20Lionel&rft.date=2023-11-01&rft.volume=16&rft.issue=6&rft.spage=4328&rft.epage=4344&rft.pages=4328-4344&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2023.3320752&rft_dat=%3Cproquest_RIE%3E2902116892%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902116892&rft_id=info:pmid/&rft_ieee_id=10268016&rfr_iscdi=true