Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing
Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across he...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2023-11, Vol.16 (6), p.4328-4344 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4344 |
---|---|
container_issue | 6 |
container_start_page | 4328 |
container_title | IEEE transactions on services computing |
container_volume | 16 |
creator | Nkenyereye, Lionel Baeg, Kang-Jun Chung, Wan-Young |
description | Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system. |
doi_str_mv | 10.1109/TSC.2023.3320752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2902116892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10268016</ieee_id><sourcerecordid>2902116892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-92676003f39128b5289b5bf1431b113e08b7869bdcd6cc00b532cfd0ab07072a3</originalsourceid><addsrcrecordid>eNpNkM1PwzAMxSMEEmNw58ChEucOx1k_ckRlwKRJoDHOVZO6U6YtKUl3gL-elu7AyfbTe7b1Y-yWw4xzkA-bj2KGgGImBEKW4BmboMgwBoT5OZtwKWTMRTa_ZFch7ABSzHM5Yf6JqI3WZGzjvKYD2S5aUeWtsduol6LC2a4ylrz5oTpa1FuKlraj_d5syephaMj_dWv6OlLoonfvNIUwLDA2WrrNmCrcoT12vXrNLppqH-jmVKfs83mxKV7j1dvLsnhcxRoldrHENEsBRCMkx1wlmEuVqIbPBVecC4JcZXkqVa3rVGsAlQjUTQ2VggwyrMSU3Y97W-_-Pit37uhtf7JECch5mkvsXTC6tHcheGrK1ptD5b9LDuVAtuzJlgPZ8kS2j9yNEUNE_-yY5sBT8Qt73HSz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902116892</pqid></control><display><type>article</type><title>Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Nkenyereye, Lionel ; Baeg, Kang-Jun ; Chung, Wan-Young</creator><creatorcontrib>Nkenyereye, Lionel ; Baeg, Kang-Jun ; Chung, Wan-Young</creatorcontrib><description>Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2023.3320752</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AI model inference ; Algorithms ; Artificial intelligence ; Cloud computing ; Clustering algorithms ; Clusters ; Computational modeling ; Containers ; Data collection ; Data models ; Deep learning ; deep reinforcement learning ; Edge computing ; edge intelligence ; Inference ; Inference algorithms ; Intelligence ; Internet of Things ; IoT edge computing ; IoT service layer ; Machine learning ; Provisioning ; Wearable technology ; Workload ; Workloads</subject><ispartof>IEEE transactions on services computing, 2023-11, Vol.16 (6), p.4328-4344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-92676003f39128b5289b5bf1431b113e08b7869bdcd6cc00b532cfd0ab07072a3</citedby><cites>FETCH-LOGICAL-c292t-92676003f39128b5289b5bf1431b113e08b7869bdcd6cc00b532cfd0ab07072a3</cites><orcidid>0000-0001-6714-4402 ; 0000-0002-0121-855X ; 0000-0001-7821-2458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10268016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10268016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nkenyereye, Lionel</creatorcontrib><creatorcontrib>Baeg, Kang-Jun</creatorcontrib><creatorcontrib>Chung, Wan-Young</creatorcontrib><title>Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system.</description><subject>AI model inference</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Computational modeling</subject><subject>Containers</subject><subject>Data collection</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Edge computing</subject><subject>edge intelligence</subject><subject>Inference</subject><subject>Inference algorithms</subject><subject>Intelligence</subject><subject>Internet of Things</subject><subject>IoT edge computing</subject><subject>IoT service layer</subject><subject>Machine learning</subject><subject>Provisioning</subject><subject>Wearable technology</subject><subject>Workload</subject><subject>Workloads</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PwzAMxSMEEmNw58ChEucOx1k_ckRlwKRJoDHOVZO6U6YtKUl3gL-elu7AyfbTe7b1Y-yWw4xzkA-bj2KGgGImBEKW4BmboMgwBoT5OZtwKWTMRTa_ZFch7ABSzHM5Yf6JqI3WZGzjvKYD2S5aUeWtsduol6LC2a4ylrz5oTpa1FuKlraj_d5syephaMj_dWv6OlLoonfvNIUwLDA2WrrNmCrcoT12vXrNLppqH-jmVKfs83mxKV7j1dvLsnhcxRoldrHENEsBRCMkx1wlmEuVqIbPBVecC4JcZXkqVa3rVGsAlQjUTQ2VggwyrMSU3Y97W-_-Pit37uhtf7JECch5mkvsXTC6tHcheGrK1ptD5b9LDuVAtuzJlgPZ8kS2j9yNEUNE_-yY5sBT8Qt73HSz</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Nkenyereye, Lionel</creator><creator>Baeg, Kang-Jun</creator><creator>Chung, Wan-Young</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6714-4402</orcidid><orcidid>https://orcid.org/0000-0002-0121-855X</orcidid><orcidid>https://orcid.org/0000-0001-7821-2458</orcidid></search><sort><creationdate>20231101</creationdate><title>Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing</title><author>Nkenyereye, Lionel ; Baeg, Kang-Jun ; Chung, Wan-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-92676003f39128b5289b5bf1431b113e08b7869bdcd6cc00b532cfd0ab07072a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AI model inference</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Computational modeling</topic><topic>Containers</topic><topic>Data collection</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Edge computing</topic><topic>edge intelligence</topic><topic>Inference</topic><topic>Inference algorithms</topic><topic>Intelligence</topic><topic>Internet of Things</topic><topic>IoT edge computing</topic><topic>IoT service layer</topic><topic>Machine learning</topic><topic>Provisioning</topic><topic>Wearable technology</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nkenyereye, Lionel</creatorcontrib><creatorcontrib>Baeg, Kang-Jun</creatorcontrib><creatorcontrib>Chung, Wan-Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nkenyereye, Lionel</au><au>Baeg, Kang-Jun</au><au>Chung, Wan-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>16</volume><issue>6</issue><spage>4328</spage><epage>4344</epage><pages>4328-4344</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Edge intelligence (EI) refers to a set of connected systems and devices for artificial intelligence (AI) data collected and learned near the data collection site. The EI model inference phase has been improved through edge caching technologies such as intelligent models (IMs). IM inference across heterogeneously distributed edge nodes is worthy of discussion. The present focuses on software-defined infrastructure (SDI) and introduces a containerized EI framework for a mobile wearable Internet-of-Things (IoT) system. This framework, called the containerized edge intelligence framework (CEIF), is an inter-working architecture that allows the provisioning of containerized EI processing intelligent services related to mobile wearable IoT systems. CEIF enables dynamic instantiation of the inference services of AI models that have been pre-trained on clouds. It also accommodates edge computing devices (ECDs) running the container virtualization technique. Dynamic AI learning policies can also help with workload optimization, thereby reducing the response time of the requests of the EI inference. To stall the rapid increase in user workload when inferring the collected data for analysis, we then propose a deep q-learning algorithm in which the container cluster platform learns the varying user workload at the location of each ECD. The requests of the EI inference are scaled with the learned value and are processed successfully without overloading the ECD. When evaluated in a case study, the proposed algorithm enabled scaling of the processing requests of the EI inference in a containerized EI system while minimizing the number of instantiated container EI instances. The EI inference's requests are completed in an under-loaded container EI cluster system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2023.3320752</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6714-4402</orcidid><orcidid>https://orcid.org/0000-0002-0121-855X</orcidid><orcidid>https://orcid.org/0000-0001-7821-2458</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2023-11, Vol.16 (6), p.4328-4344 |
issn | 1939-1374 2372-0204 |
language | eng |
recordid | cdi_proquest_journals_2902116892 |
source | IEEE Electronic Library (IEL) |
subjects | AI model inference Algorithms Artificial intelligence Cloud computing Clustering algorithms Clusters Computational modeling Containers Data collection Data models Deep learning deep reinforcement learning Edge computing edge intelligence Inference Inference algorithms Intelligence Internet of Things IoT edge computing IoT service layer Machine learning Provisioning Wearable technology Workload Workloads |
title | Deep Reinforcement Learning for Containerized Edge Intelligence Inference Request Processing in IoT Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning%20for%20Containerized%20Edge%20Intelligence%20Inference%20Request%20Processing%20in%20IoT%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Nkenyereye,%20Lionel&rft.date=2023-11-01&rft.volume=16&rft.issue=6&rft.spage=4328&rft.epage=4344&rft.pages=4328-4344&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2023.3320752&rft_dat=%3Cproquest_RIE%3E2902116892%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902116892&rft_id=info:pmid/&rft_ieee_id=10268016&rfr_iscdi=true |