Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation
Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-12, Vol.135 (52), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 135 |
creator | Huang, Hongpu Liu, Kai Yang, Fulin Cai, Junlin Wang, Shupeng Chen, Weizhen Wang, Qiuxiang Fu, Luhong Xie, Zhaoxiong Xie, Shuifen |
description | Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P‐terminated Rh2P{200} facets (p‐Rh2P) can be bypassed on defective Rh2P{200} surfaces (d‐Rh2P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh2P nanowires (d‐Rh2P NWs) and perfect Rh2P nanocubes (p‐Rh2P NCs) are then elaborately synthesized to experimentally represent the d‐Rh2P and p‐Rh2P catalytic surfaces. As expected, the P‐vacancy‐enriched d‐Rh2P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p‐Rh2P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts.
Defect‐derived surface phosphorus vacancies on ultrathin Rh2P nanowires break the monogeneity and atomic regularity of thermodynamically stable P‐terminated surfaces, which can create additional Rh sites to act as exclusive H adsorption sites and diminish the inhibition effect of the interfacial water network to achieve drastically improved alkaline HOR electrocatalysis. |
doi_str_mv | 10.1002/ange.202315752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2901986776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901986776</sourcerecordid><originalsourceid>FETCH-LOGICAL-p782-657ed50ae5a0a85d31c04e11f3a82246d02b8b804d631c859453be2b79e326b43</originalsourceid><addsrcrecordid>eNo9kEFPwjAcxRujiYhePTfxPG27dd2OExBMEIgSr0u3_QeF0c52qLv5ATz4Gf0kQjCcXl7ey3vJD6FrSm4pIexO6gXcMsJ8ygVnJ6hDOaOeL7g4RR1CgsCLWBCfowvnVoSQkIm4g77vLci10gv8srWlzAEnjdmoHD8ZbRagQTUtNiV-XrIZnkhtctnIqnWNw1mL-1BC3vx-_fTBqnco8GxpXL00duvwq8ylzhU4XBqLB2WpdkY3OKnWslIa8Kgt7P4CTz9VIRtl9CU6K2Xl4Opfu2j-MJj3Rt54OnzsJWOvFhHzQi6g4EQCl0RGvPBpTgKgtPRlxFgQFoRlURaRoAh3UcTjgPsZsEzE4LMwC_wuujnM1ta8bcE16cpsrd49piwmNI5CIcJdKz60PlQFbVpbtZG2TSlJ97TTPe30SDtNJsPB0fl_A4F4PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901986776</pqid></control><display><type>article</type><title>Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation</title><source>Wiley Journals</source><creator>Huang, Hongpu ; Liu, Kai ; Yang, Fulin ; Cai, Junlin ; Wang, Shupeng ; Chen, Weizhen ; Wang, Qiuxiang ; Fu, Luhong ; Xie, Zhaoxiong ; Xie, Shuifen</creator><creatorcontrib>Huang, Hongpu ; Liu, Kai ; Yang, Fulin ; Cai, Junlin ; Wang, Shupeng ; Chen, Weizhen ; Wang, Qiuxiang ; Fu, Luhong ; Xie, Zhaoxiong ; Xie, Shuifen</creatorcontrib><description>Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P‐terminated Rh2P{200} facets (p‐Rh2P) can be bypassed on defective Rh2P{200} surfaces (d‐Rh2P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh2P nanowires (d‐Rh2P NWs) and perfect Rh2P nanocubes (p‐Rh2P NCs) are then elaborately synthesized to experimentally represent the d‐Rh2P and p‐Rh2P catalytic surfaces. As expected, the P‐vacancy‐enriched d‐Rh2P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p‐Rh2P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts.
Defect‐derived surface phosphorus vacancies on ultrathin Rh2P nanowires break the monogeneity and atomic regularity of thermodynamically stable P‐terminated surfaces, which can create additional Rh sites to act as exclusive H adsorption sites and diminish the inhibition effect of the interfacial water network to achieve drastically improved alkaline HOR electrocatalysis.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202315752</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Alkaline Hydrogen Oxidation Reaction ; Atomic properties ; Catalysis ; Catalysts ; Catalytic activity ; Chemistry ; Defect Engineering ; Defects ; Density functional theory ; Electrocatalysis ; Electrocatalysts ; Hydrogen ; Nanocatalysis ; Nanotechnology ; Nanowires ; Oxidation ; Phosphorus ; Phosphorus Vacancy ; Rhodium Phosphide ; Strategy ; Surface chemistry ; Ultrathin Nanowires</subject><ispartof>Angewandte Chemie, 2023-12, Vol.135 (52), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4283-6626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202315752$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202315752$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Huang, Hongpu</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Yang, Fulin</creatorcontrib><creatorcontrib>Cai, Junlin</creatorcontrib><creatorcontrib>Wang, Shupeng</creatorcontrib><creatorcontrib>Chen, Weizhen</creatorcontrib><creatorcontrib>Wang, Qiuxiang</creatorcontrib><creatorcontrib>Fu, Luhong</creatorcontrib><creatorcontrib>Xie, Zhaoxiong</creatorcontrib><creatorcontrib>Xie, Shuifen</creatorcontrib><title>Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation</title><title>Angewandte Chemie</title><description>Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P‐terminated Rh2P{200} facets (p‐Rh2P) can be bypassed on defective Rh2P{200} surfaces (d‐Rh2P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh2P nanowires (d‐Rh2P NWs) and perfect Rh2P nanocubes (p‐Rh2P NCs) are then elaborately synthesized to experimentally represent the d‐Rh2P and p‐Rh2P catalytic surfaces. As expected, the P‐vacancy‐enriched d‐Rh2P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p‐Rh2P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts.
Defect‐derived surface phosphorus vacancies on ultrathin Rh2P nanowires break the monogeneity and atomic regularity of thermodynamically stable P‐terminated surfaces, which can create additional Rh sites to act as exclusive H adsorption sites and diminish the inhibition effect of the interfacial water network to achieve drastically improved alkaline HOR electrocatalysis.</description><subject>Adsorption</subject><subject>Alkaline Hydrogen Oxidation Reaction</subject><subject>Atomic properties</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Defect Engineering</subject><subject>Defects</subject><subject>Density functional theory</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Hydrogen</subject><subject>Nanocatalysis</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Phosphorus</subject><subject>Phosphorus Vacancy</subject><subject>Rhodium Phosphide</subject><subject>Strategy</subject><subject>Surface chemistry</subject><subject>Ultrathin Nanowires</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwjAcxRujiYhePTfxPG27dd2OExBMEIgSr0u3_QeF0c52qLv5ATz4Gf0kQjCcXl7ey3vJD6FrSm4pIexO6gXcMsJ8ygVnJ6hDOaOeL7g4RR1CgsCLWBCfowvnVoSQkIm4g77vLci10gv8srWlzAEnjdmoHD8ZbRagQTUtNiV-XrIZnkhtctnIqnWNw1mL-1BC3vx-_fTBqnco8GxpXL00duvwq8ylzhU4XBqLB2WpdkY3OKnWslIa8Kgt7P4CTz9VIRtl9CU6K2Xl4Opfu2j-MJj3Rt54OnzsJWOvFhHzQi6g4EQCl0RGvPBpTgKgtPRlxFgQFoRlURaRoAh3UcTjgPsZsEzE4LMwC_wuujnM1ta8bcE16cpsrd49piwmNI5CIcJdKz60PlQFbVpbtZG2TSlJ97TTPe30SDtNJsPB0fl_A4F4PA</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Huang, Hongpu</creator><creator>Liu, Kai</creator><creator>Yang, Fulin</creator><creator>Cai, Junlin</creator><creator>Wang, Shupeng</creator><creator>Chen, Weizhen</creator><creator>Wang, Qiuxiang</creator><creator>Fu, Luhong</creator><creator>Xie, Zhaoxiong</creator><creator>Xie, Shuifen</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4283-6626</orcidid></search><sort><creationdate>20231221</creationdate><title>Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation</title><author>Huang, Hongpu ; Liu, Kai ; Yang, Fulin ; Cai, Junlin ; Wang, Shupeng ; Chen, Weizhen ; Wang, Qiuxiang ; Fu, Luhong ; Xie, Zhaoxiong ; Xie, Shuifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p782-657ed50ae5a0a85d31c04e11f3a82246d02b8b804d631c859453be2b79e326b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Alkaline Hydrogen Oxidation Reaction</topic><topic>Atomic properties</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Defect Engineering</topic><topic>Defects</topic><topic>Density functional theory</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Hydrogen</topic><topic>Nanocatalysis</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Phosphorus</topic><topic>Phosphorus Vacancy</topic><topic>Rhodium Phosphide</topic><topic>Strategy</topic><topic>Surface chemistry</topic><topic>Ultrathin Nanowires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hongpu</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Yang, Fulin</creatorcontrib><creatorcontrib>Cai, Junlin</creatorcontrib><creatorcontrib>Wang, Shupeng</creatorcontrib><creatorcontrib>Chen, Weizhen</creatorcontrib><creatorcontrib>Wang, Qiuxiang</creatorcontrib><creatorcontrib>Fu, Luhong</creatorcontrib><creatorcontrib>Xie, Zhaoxiong</creatorcontrib><creatorcontrib>Xie, Shuifen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hongpu</au><au>Liu, Kai</au><au>Yang, Fulin</au><au>Cai, Junlin</au><au>Wang, Shupeng</au><au>Chen, Weizhen</au><au>Wang, Qiuxiang</au><au>Fu, Luhong</au><au>Xie, Zhaoxiong</au><au>Xie, Shuifen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-12-21</date><risdate>2023</risdate><volume>135</volume><issue>52</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P‐terminated Rh2P{200} facets (p‐Rh2P) can be bypassed on defective Rh2P{200} surfaces (d‐Rh2P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh2P nanowires (d‐Rh2P NWs) and perfect Rh2P nanocubes (p‐Rh2P NCs) are then elaborately synthesized to experimentally represent the d‐Rh2P and p‐Rh2P catalytic surfaces. As expected, the P‐vacancy‐enriched d‐Rh2P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p‐Rh2P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts.
Defect‐derived surface phosphorus vacancies on ultrathin Rh2P nanowires break the monogeneity and atomic regularity of thermodynamically stable P‐terminated surfaces, which can create additional Rh sites to act as exclusive H adsorption sites and diminish the inhibition effect of the interfacial water network to achieve drastically improved alkaline HOR electrocatalysis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202315752</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4283-6626</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2023-12, Vol.135 (52), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2901986776 |
source | Wiley Journals |
subjects | Adsorption Alkaline Hydrogen Oxidation Reaction Atomic properties Catalysis Catalysts Catalytic activity Chemistry Defect Engineering Defects Density functional theory Electrocatalysis Electrocatalysts Hydrogen Nanocatalysis Nanotechnology Nanowires Oxidation Phosphorus Phosphorus Vacancy Rhodium Phosphide Strategy Surface chemistry Ultrathin Nanowires |
title | Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20Surface%20Atomic%20Monogeneity%20of%20Rh2P%20Nanocatalysts%20by%20Defect%E2%80%90Derived%20Phosphorus%20Vacancies%20for%20Efficient%20Alkaline%20Hydrogen%20Oxidation&rft.jtitle=Angewandte%20Chemie&rft.au=Huang,%20Hongpu&rft.date=2023-12-21&rft.volume=135&rft.issue=52&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202315752&rft_dat=%3Cproquest_wiley%3E2901986776%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901986776&rft_id=info:pmid/&rfr_iscdi=true |