Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation

Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-12, Vol.135 (52), p.n/a
Hauptverfasser: Huang, Hongpu, Liu, Kai, Yang, Fulin, Cai, Junlin, Wang, Shupeng, Chen, Weizhen, Wang, Qiuxiang, Fu, Luhong, Xie, Zhaoxiong, Xie, Shuifen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Huang, Hongpu
Liu, Kai
Yang, Fulin
Cai, Junlin
Wang, Shupeng
Chen, Weizhen
Wang, Qiuxiang
Fu, Luhong
Xie, Zhaoxiong
Xie, Shuifen
description Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P‐terminated Rh2P{200} facets (p‐Rh2P) can be bypassed on defective Rh2P{200} surfaces (d‐Rh2P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh2P nanowires (d‐Rh2P NWs) and perfect Rh2P nanocubes (p‐Rh2P NCs) are then elaborately synthesized to experimentally represent the d‐Rh2P and p‐Rh2P catalytic surfaces. As expected, the P‐vacancy‐enriched d‐Rh2P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p‐Rh2P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts. Defect‐derived surface phosphorus vacancies on ultrathin Rh2P nanowires break the monogeneity and atomic regularity of thermodynamically stable P‐terminated surfaces, which can create additional Rh sites to act as exclusive H adsorption sites and diminish the inhibition effect of the interfacial water network to achieve drastically improved alkaline HOR electrocatalysis.
doi_str_mv 10.1002/ange.202315752
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2901986776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901986776</sourcerecordid><originalsourceid>FETCH-LOGICAL-p782-657ed50ae5a0a85d31c04e11f3a82246d02b8b804d631c859453be2b79e326b43</originalsourceid><addsrcrecordid>eNo9kEFPwjAcxRujiYhePTfxPG27dd2OExBMEIgSr0u3_QeF0c52qLv5ATz4Gf0kQjCcXl7ey3vJD6FrSm4pIexO6gXcMsJ8ygVnJ6hDOaOeL7g4RR1CgsCLWBCfowvnVoSQkIm4g77vLci10gv8srWlzAEnjdmoHD8ZbRagQTUtNiV-XrIZnkhtctnIqnWNw1mL-1BC3vx-_fTBqnco8GxpXL00duvwq8ylzhU4XBqLB2WpdkY3OKnWslIa8Kgt7P4CTz9VIRtl9CU6K2Xl4Opfu2j-MJj3Rt54OnzsJWOvFhHzQi6g4EQCl0RGvPBpTgKgtPRlxFgQFoRlURaRoAh3UcTjgPsZsEzE4LMwC_wuujnM1ta8bcE16cpsrd49piwmNI5CIcJdKz60PlQFbVpbtZG2TSlJ97TTPe30SDtNJsPB0fl_A4F4PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901986776</pqid></control><display><type>article</type><title>Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation</title><source>Wiley Journals</source><creator>Huang, Hongpu ; Liu, Kai ; Yang, Fulin ; Cai, Junlin ; Wang, Shupeng ; Chen, Weizhen ; Wang, Qiuxiang ; Fu, Luhong ; Xie, Zhaoxiong ; Xie, Shuifen</creator><creatorcontrib>Huang, Hongpu ; Liu, Kai ; Yang, Fulin ; Cai, Junlin ; Wang, Shupeng ; Chen, Weizhen ; Wang, Qiuxiang ; Fu, Luhong ; Xie, Zhaoxiong ; Xie, Shuifen</creatorcontrib><description>Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P‐terminated Rh2P{200} facets (p‐Rh2P) can be bypassed on defective Rh2P{200} surfaces (d‐Rh2P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh2P nanowires (d‐Rh2P NWs) and perfect Rh2P nanocubes (p‐Rh2P NCs) are then elaborately synthesized to experimentally represent the d‐Rh2P and p‐Rh2P catalytic surfaces. As expected, the P‐vacancy‐enriched d‐Rh2P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p‐Rh2P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts. Defect‐derived surface phosphorus vacancies on ultrathin Rh2P nanowires break the monogeneity and atomic regularity of thermodynamically stable P‐terminated surfaces, which can create additional Rh sites to act as exclusive H adsorption sites and diminish the inhibition effect of the interfacial water network to achieve drastically improved alkaline HOR electrocatalysis.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202315752</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Alkaline Hydrogen Oxidation Reaction ; Atomic properties ; Catalysis ; Catalysts ; Catalytic activity ; Chemistry ; Defect Engineering ; Defects ; Density functional theory ; Electrocatalysis ; Electrocatalysts ; Hydrogen ; Nanocatalysis ; Nanotechnology ; Nanowires ; Oxidation ; Phosphorus ; Phosphorus Vacancy ; Rhodium Phosphide ; Strategy ; Surface chemistry ; Ultrathin Nanowires</subject><ispartof>Angewandte Chemie, 2023-12, Vol.135 (52), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4283-6626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202315752$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202315752$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Huang, Hongpu</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Yang, Fulin</creatorcontrib><creatorcontrib>Cai, Junlin</creatorcontrib><creatorcontrib>Wang, Shupeng</creatorcontrib><creatorcontrib>Chen, Weizhen</creatorcontrib><creatorcontrib>Wang, Qiuxiang</creatorcontrib><creatorcontrib>Fu, Luhong</creatorcontrib><creatorcontrib>Xie, Zhaoxiong</creatorcontrib><creatorcontrib>Xie, Shuifen</creatorcontrib><title>Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation</title><title>Angewandte Chemie</title><description>Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P‐terminated Rh2P{200} facets (p‐Rh2P) can be bypassed on defective Rh2P{200} surfaces (d‐Rh2P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh2P nanowires (d‐Rh2P NWs) and perfect Rh2P nanocubes (p‐Rh2P NCs) are then elaborately synthesized to experimentally represent the d‐Rh2P and p‐Rh2P catalytic surfaces. As expected, the P‐vacancy‐enriched d‐Rh2P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p‐Rh2P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts. Defect‐derived surface phosphorus vacancies on ultrathin Rh2P nanowires break the monogeneity and atomic regularity of thermodynamically stable P‐terminated surfaces, which can create additional Rh sites to act as exclusive H adsorption sites and diminish the inhibition effect of the interfacial water network to achieve drastically improved alkaline HOR electrocatalysis.</description><subject>Adsorption</subject><subject>Alkaline Hydrogen Oxidation Reaction</subject><subject>Atomic properties</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Defect Engineering</subject><subject>Defects</subject><subject>Density functional theory</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Hydrogen</subject><subject>Nanocatalysis</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Phosphorus</subject><subject>Phosphorus Vacancy</subject><subject>Rhodium Phosphide</subject><subject>Strategy</subject><subject>Surface chemistry</subject><subject>Ultrathin Nanowires</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwjAcxRujiYhePTfxPG27dd2OExBMEIgSr0u3_QeF0c52qLv5ATz4Gf0kQjCcXl7ey3vJD6FrSm4pIexO6gXcMsJ8ygVnJ6hDOaOeL7g4RR1CgsCLWBCfowvnVoSQkIm4g77vLci10gv8srWlzAEnjdmoHD8ZbRagQTUtNiV-XrIZnkhtctnIqnWNw1mL-1BC3vx-_fTBqnco8GxpXL00duvwq8ylzhU4XBqLB2WpdkY3OKnWslIa8Kgt7P4CTz9VIRtl9CU6K2Xl4Opfu2j-MJj3Rt54OnzsJWOvFhHzQi6g4EQCl0RGvPBpTgKgtPRlxFgQFoRlURaRoAh3UcTjgPsZsEzE4LMwC_wuujnM1ta8bcE16cpsrd49piwmNI5CIcJdKz60PlQFbVpbtZG2TSlJ97TTPe30SDtNJsPB0fl_A4F4PA</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Huang, Hongpu</creator><creator>Liu, Kai</creator><creator>Yang, Fulin</creator><creator>Cai, Junlin</creator><creator>Wang, Shupeng</creator><creator>Chen, Weizhen</creator><creator>Wang, Qiuxiang</creator><creator>Fu, Luhong</creator><creator>Xie, Zhaoxiong</creator><creator>Xie, Shuifen</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4283-6626</orcidid></search><sort><creationdate>20231221</creationdate><title>Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation</title><author>Huang, Hongpu ; Liu, Kai ; Yang, Fulin ; Cai, Junlin ; Wang, Shupeng ; Chen, Weizhen ; Wang, Qiuxiang ; Fu, Luhong ; Xie, Zhaoxiong ; Xie, Shuifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p782-657ed50ae5a0a85d31c04e11f3a82246d02b8b804d631c859453be2b79e326b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Alkaline Hydrogen Oxidation Reaction</topic><topic>Atomic properties</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Defect Engineering</topic><topic>Defects</topic><topic>Density functional theory</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Hydrogen</topic><topic>Nanocatalysis</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Phosphorus</topic><topic>Phosphorus Vacancy</topic><topic>Rhodium Phosphide</topic><topic>Strategy</topic><topic>Surface chemistry</topic><topic>Ultrathin Nanowires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hongpu</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Yang, Fulin</creatorcontrib><creatorcontrib>Cai, Junlin</creatorcontrib><creatorcontrib>Wang, Shupeng</creatorcontrib><creatorcontrib>Chen, Weizhen</creatorcontrib><creatorcontrib>Wang, Qiuxiang</creatorcontrib><creatorcontrib>Fu, Luhong</creatorcontrib><creatorcontrib>Xie, Zhaoxiong</creatorcontrib><creatorcontrib>Xie, Shuifen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hongpu</au><au>Liu, Kai</au><au>Yang, Fulin</au><au>Cai, Junlin</au><au>Wang, Shupeng</au><au>Chen, Weizhen</au><au>Wang, Qiuxiang</au><au>Fu, Luhong</au><au>Xie, Zhaoxiong</au><au>Xie, Shuifen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-12-21</date><risdate>2023</risdate><volume>135</volume><issue>52</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi‐step catalytic reactions. Here, we report a defect‐derived strategy for creating surface phosphorous vacancies (P‐vacancies) on nanometric Rh2P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P‐terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P‐terminated Rh2P{200} facets (p‐Rh2P) can be bypassed on defective Rh2P{200} surfaces (d‐Rh2P). The P‐vacancies enable the exposure of sub‐surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P‐sites to effectively accelerate the alkaline HOR. Defective Rh2P nanowires (d‐Rh2P NWs) and perfect Rh2P nanocubes (p‐Rh2P NCs) are then elaborately synthesized to experimentally represent the d‐Rh2P and p‐Rh2P catalytic surfaces. As expected, the P‐vacancy‐enriched d‐Rh2P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p‐Rh2P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts. Defect‐derived surface phosphorus vacancies on ultrathin Rh2P nanowires break the monogeneity and atomic regularity of thermodynamically stable P‐terminated surfaces, which can create additional Rh sites to act as exclusive H adsorption sites and diminish the inhibition effect of the interfacial water network to achieve drastically improved alkaline HOR electrocatalysis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202315752</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4283-6626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-12, Vol.135 (52), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2901986776
source Wiley Journals
subjects Adsorption
Alkaline Hydrogen Oxidation Reaction
Atomic properties
Catalysis
Catalysts
Catalytic activity
Chemistry
Defect Engineering
Defects
Density functional theory
Electrocatalysis
Electrocatalysts
Hydrogen
Nanocatalysis
Nanotechnology
Nanowires
Oxidation
Phosphorus
Phosphorus Vacancy
Rhodium Phosphide
Strategy
Surface chemistry
Ultrathin Nanowires
title Breaking Surface Atomic Monogeneity of Rh2P Nanocatalysts by Defect‐Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20Surface%20Atomic%20Monogeneity%20of%20Rh2P%20Nanocatalysts%20by%20Defect%E2%80%90Derived%20Phosphorus%20Vacancies%20for%20Efficient%20Alkaline%20Hydrogen%20Oxidation&rft.jtitle=Angewandte%20Chemie&rft.au=Huang,%20Hongpu&rft.date=2023-12-21&rft.volume=135&rft.issue=52&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202315752&rft_dat=%3Cproquest_wiley%3E2901986776%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901986776&rft_id=info:pmid/&rfr_iscdi=true